

Advance Praise for Getting Started with Processing

“Making a computer program used to be as easy as turning it on and
typing one or two lines of code to get it to say, ‘Hello.’ Now it takes
a 500+-page manual and an entire village. Not anymore. This little
book by Ben and Casey gets you computationally drawing lines, tri-
angles, and circles within minutes of clicking the ‘download’ button.
They’ve made making computer programs humanly and humanely
possible again—and that’s no small feat.”

—John Maeda,
President of Rhode Island School of Design

“Getting Started with Processing is not only a straightforward intro-
duction to basic programming—it’s fun! It almost feels like an activity
workbook for grownups. You may want to buy it even if you never
thought you were interested in programming, because you will be.“

—Mark Allen,
Founder and Director, Machine Project

“This is an excellent primer for those wanting to dip their feet into
programming graphics. Its learning by doing approach makes it
particularly appropriate for artists and designers who are often put
off by more traditional theory first approaches. The price of the book
and the fact that the Processing environment is open source makes
this an excellent choice for students.“

—Gillian Crampton Smith,
Fondazione Venezia Professor of Design, IUAV University of Venice

“Processing changed dramatically the way we teach programming
and it’s one of the major factors of the success of Arduino.”

—Massimo Banzi,
Cofounder of Arduino

“Casey Reas and Ben Fry champion the exciting power of programming
for creatives in Getting Started with Processing, a hands-on guide for
making code-based drawings and interactive graphics. Reas and Fry
are clear and direct, but as artists, they’re not afraid to be a bit eccen-
tric and offbeat. This makes their unique form of teaching powerful.”

—Holly Willis,
Director of Academic Programs,

Institute for Multimedia Literacy, School of Cinematic Arts, USC

Getting
Started
with
Processing
Casey Reas and Ben Fry

From library of Wow! eBook

Getting Started with Processing
by Casey Reas and Ben Fry

Copyright © 2010 Casey Reas and Ben Fry. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc.
1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business,
or sales promotional use. Online editions are also available for
most titles (http://my.safaribooksonline.com). For more infor-
mation, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Print History: June 2010: First Edition.

Editor: Brian Jepson
Development Editor: Tom Sgouros
Production Editor: Rachel Monaghan
Copyeditor: Nancy Kotary
Proofreader: Rachel Monaghan
Compositor: Nancy Kotary
Indexer: Ron Strauss
Illustrations: Casey Reas and Ben Fry
Cover Designer: Karen Montgomery

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
The Make: Projects series designations and related trade dress
are trademarks of O’Reilly Media, Inc. The trademarks of third
parties used in this work are the property of their respective
owners.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and O’Reilly Media, Inc.
was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this
book, the publisher and authors assume no responsibility for
errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-1-449-37980-3
[M]

From library of Wow! eBook

Contents v

Contents

Preface. . vii

1/Hello. . 1
Sketching and Prototyping . 2

Flexibility . 3

Giants. 4

Family Tree . 5

Join In . 6

2/Starting to Code. . 7
Your First Program. 8

Show. 10

Save. 11

Share. 12

Examples and Reference . 13

3/Draw. . 15
Basic Shapes. 16

Drawing Order. 22

Shape Properties. 23

Color. 26

Custom Shapes . 30

Comments. 33

Robot 1: Draw . 34

4/Variables. . 37
Making Variables . 39

Processing Variables. 40

A Little Math . 40

Repetition . 42

Robot 2: Variables . 49

5/Response. . 51
Follow. 53

Map. 58

Click . 60

Location. 64

Type. 68

Robot 3: Response. 74

From library of Wow! eBook

vi Contents

6/Media. . 77
Images . 78

Fonts. 83

Shapes. 86

Robot 4: Media. 89

7/Motion . . 91
Speed and Direction . 92

Tweening . 95

Random. 97

Timers . 99

Circular. 100

Translate, Rotate, Scale. 104

Robot 5: Motion . 113

8/Functions. . 115
Function Basics . 116

Make a Function. 118

Return Values . 124

Robot 6: Functions. 126

9/Objects . . 129
Classes and Objects . 130

Robot 7: Objects. 138

10/Arrays. . 141
Make an Array. 144

Repetition and Arrays. 147

Arrays of Objects. 150

Robot 8: Arrays. 153

11/Extend. . 157
3D . 158

Image Export . 164

Hello Arduino. 168

Community. 175

A/Coding Tips. . 177

B/Data Types . . 183

C/Order of Operations. 185

D/Variable Scope. . 187

Index. . 189

From library of Wow! eBook

 vii

Preface

We created Processing to make programming
interactive graphics easier. We were frustrated
with how difficult it was to write this type of
software with the programming languages we
usually used (C++ and Java) and were inspired
by how simple it was to write interesting
programs with the languages of our childhood
(Logo and BASIC). We were most influenced
by Design By Numbers (DBN), a language
created by our research advisor, John Maeda,
which we were maintaining and teaching at
the time.

Processing was born in spring 2001 as a brainstorming session on a sheet
of paper. Our goal was to make a way to sketch (prototype) the type of
software we were working on, which was almost always full-screen and
interactive. We were searching for a better way to test our ideas easily
in code, rather than just talking about them or spending too much time
programming them in C++. Our other goal was to make a language for
teaching design and art students how to program and to give more tech-
nical students an easier way to work with graphics. The combination is a
positive departure from the way programming is usually taught. We begin
by focusing on graphics and interaction rather than on data structures
and text console output.

Processing experienced a long childhood; it was alpha software from
August 2002 to April 2005 and then public beta software until November
2008. During this time, it was used continuously in classrooms and by
thousands of people around the world. The language, software envi-
ronment, and pedagogy around the project were revised continuously

From library of Wow! eBook

viii Preface

during this time. Many of our original decisions about the language were
reinforced and many were changed. We developed a system of software
extensions, called libraries, that have allowed people to expand Process-
ing into many unforeseen and amazing directions. (There are now over
100 libraries.) On November 29, 2008, we launched the 1.0 version of the
software. After seven years of work, the 1.0 launch signified stability for
the language.

Now, nine years after its origin, Processing has grown beyond its original
goals, and we’ve learned how it can be useful in other contexts. Accordingly,
this book is written for a new audience—casual programmers, hobbyists,
and anyone who wants to explore what Processing can do without get-
ting lost in the details of a huge textbook. We hope you’ll have fun and be
inspired to continue programming. This book is just the start.

While we (Casey and Ben) have been guiding the Processing ship through
the waters for the last nine years, we can’t overstate that Processing is a
community effort. From writing libraries that extend the software to post-
ing code online and helping others learn, the community of people who
use Processing has pushed it far beyond its initial conception. Without
this group effort, Processing would not be what it is today.

How This Book Is Organized
The chapters in this book are organized as follows:

»» Chapter 1, “Hello”: Learn about Processing.

»» Chapter 2, “Starting to Code”: Create your first Processing program.

»» Chapter 3, “Draw”: Define and draw simple shapes.

»» Chapter 4, “Variables”: Store, modify, and reuse data.

»» Chapter 5, “Response”: Control and influence programs with the mouse
and the keyboard.

»» Chapter 6, “Media”: Load and display media including images, fonts,
and vector files.

»» Chapter 7, “Motion”: Move and choreograph shapes.

From library of Wow! eBook

Preface ix

»» Chapter 8, “Functions”: Build new code modules.

»» Chapter 9, “Objects”: Create code modules that combine variables and
functions.

»» Chapter 10, “Arrays”: Simplify working with lists of variables.

»» Chapter 11, “Extend”: Learn about 3D, image export, and reading data
from an Arduino board.

Who This Book Is For
This book is written for people who want a casual and concise introduc-
tion to computer programming, who want to create images and simple
interactive programs. It’s for people who want a jump start on under-
standing the thousands of free Processing code examples and refer-
ence materials available online. Getting Started with Processing is not a
programming textbook; as the title suggests, it will get you started. It’s for
teenagers, hobbyists, grandparents, and everyone in between.

This book is also appropriate for people with programming experience
who want to learn the basics of interactive computer graphics. Getting
Started with Processing contains techniques that can be applied to creat-
ing games, animation, and interfaces.

Conventions Used in This Book
The following typographical conventions are used in this book:

»» Italic: Used to indicate new terms and filenames, as well as within
paragraphs to refer to program elements such as variable or function
names, data types, and keywords.

»» Constant width: Used for program listings.

NOTE: This type of paragraph signifies a general note.

From library of Wow! eBook

x Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use
the code in this book in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Getting
Started with Processing, by Casey Reas and Ben Fry. Copyright 2010
Casey Reas and Ben Fry, 978-1-449-37980-3.”

If you feel your use of code examples falls outside fair use or the permis-
sion given here, feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

»» http://oreilly.com/catalog/0636920000570

To comment or ask technical questions about this book, send email to:

»» bookquestions@oreilly.com

From library of Wow! eBook

Preface xi

For more information about our books, conferences, Resource Centers,
and the O’Reilly Network, see our website at:

»» http://oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library
that lets you easily search over 7,500 technology
and creative reference books and videos to find the

answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access
new titles before they are available for print, and get exclusive access to
manuscripts in development and post feedback for the authors. Copy and
paste code samples, organize your favorites, download chapters, book-
mark key sections, create notes, print out pages, and benefit from tons of
other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online
service. To have full digital access to this book and others on similar
topics from O’Reilly and other publishers, sign up for free at http://
my.safaribooksonline.com.

Acknowledgments
We thank Brian Jepson for his great energy, support, and insight. Nancy
Kotary, Rachel Monaghan, and Sumita Mukherji gracefully carried the
book to the finish line.

Tom Sgouros made a thorough edit of the book and David Humphrey
provided an insightful technical review.

We can’t imagine this book without Massimo Banzi’s Getting Started with
Arduino (O’Reilly). Massimo’s excellent book is the prototype.

A small group of individuals has, for years, contributed essential time and
energy to Processing. We thank Florian Jenett for his web hacking and
excellent design ability, Andreas Schlegel for creating the infrastructure

From library of Wow! eBook

xii Preface

for building and documenting contributed libraries, and Dan Shiffman for
writing amazing examples and managing the online tutorials. Over time,
many others have contributed to the Processing software itself, among
them Karsten Schmidt, Eric Jordan, and Jonathan Feinberg. The work
of the Discourse forum administrators PhiLho, Cedric, and antiplastik is
crucial for keeping the discussion running.

We’re amazed by the incredible work of the individuals who write libraries
and contribute their work to the community. Thank you to all! A special
notice is deserved for Andres Colubri’s GLGraphics and GSVideo libraries,
Damien Di Fede’s Minim sound library, and Karsten Schmidt’s extensive
and inspiring toxiclibs.

The Processing 1.0 release was supported by Miami University and Oblong
Industries. The Armstrong Institute for Interactive Media Studies at Miami
University funded the Oxford Project, a series of Processing development
workshops. These workshops were made possible through the hard work
of Ira Greenberg. These four-day meetings in Oxford, Ohio, and Pittsburgh,
Pennsylvania, enabled the November 2008 launch of Processing 1.0.
Oblong Industries funded Ben Fry to develop Processing during summer
2008; this was essential to the release.

This book grew out of teaching with Processing at UCLA. Chandler
McWilliams has been instrumental in defining these classes. Casey
thanks the undergraduate students in the Department of Design Media
Arts at UCLA for their energy and enthusiasm. His teaching assistants
have been great collaborators in defining how Processing is taught. Hats
off to Tatsuya Saito, John Houck, Tyler Adams, Aaron Siegel, Casey Alt,
Andres Colubri, Michael Kontopoulos, David Elliot, Christo Allegra, Pete
Hawkes, and Lauren McCarthy.

OpenProcessing has emerged as the place to share open source Process-
ing code. We thank Sinan Ascioglu for this amazing community resource.

Processing.js is an exciting future for Processing and the open Web.
Three cheers for John Resig, Al MacDonald, David Humphrey, and the
Seneca College’s Centre for Development of Open Technology (CDOT),
Robert O’Rourke, and the Mozilla Foundation.

Through founding the Aesthetics and Computation Group (1996–2002)
at the MIT Media Lab, John Maeda made all of this possible.

From library of Wow! eBook

 1

1/Hello

Processing is for writing software to make
images, animations, and interactions. The
idea is to write a single line of code, and have
a circle show up on the screen. Add a few
more lines of code, and the circle follows the
mouse. Another line of code, and the circle
changes color when the mouse is pressed.
We call this sketching with code. You write
one line, then add another, then another, and
so on. The result is a program created one
piece at a time.

Programming courses typically focus on structure and theory first.
Anything visual—an interface, an animation—is considered a dessert to
be enjoyed only after finishing your vegetables, usually several weeks of
studying algorithms and methods. Over the years, we’ve watched many
friends try to take such courses and drop out after the first lecture or
after a long, frustrating night before the first assignment deadline. What
initial curiosity they had about making the computer work for them was
lost because they couldn’t see a path from what they had to learn first to
what they wanted to create.

Processing offers a way to learn programming through creating interac-
tive graphics. There are many possible ways to teach coding, but students
often find encouragement and motivation in immediate visual feedback.
Processing’s capacity for providing that feedback has made it a popular
way to approach programming, and its emphasis on images, sketching,
and community is discussed in the next few pages.

From library of Wow! eBook

2 Getting Started with Processing

Sketching and Prototyping
Sketching is a way of thinking; it’s playful and quick. The basic goal is to
explore many ideas in a short amount of time. In our own work, we
usually start by sketching on paper and then moving the results into
code. Ideas for animation and interactions are usually sketched as
storyboards with notations. After making some software sketches, the
best ideas are selected and combined into prototypes (Figure 1-1). It’s a
cyclical process of making, testing, and improving that moves back and
forth between paper and screen.

Figure 1-1. As drawings move from sketchbook to screen, new possibilities
emerge.

From library of Wow! eBook

Hello 3

Flexibility
Like a software utility belt, Processing consists of many tools that work
together in different combinations. As a result, it can be used for quick
hacks or for in-depth research. Because a Processing program can be
as short as one line or as long as thousands, there’s room for growth
and variation. More than 100 libraries extend Processing even further
into domains including sound, computer vision, and digital fabrication
(Figure 1-2).

Figure 1-2. Many types of information can flow in and out of Processing.

From library of Wow! eBook

4 Getting Started with Processing

Giants
People have been making pictures with computers since the 1960s, and
there’s much to be learned from this history (Figure 1-3). In life, we all stand
on the shoulders of giants, and the titans for Processing include thinkers
from design, computer graphics, art, architecture, statistics, and the spaces
between. Have a look at Ivan Sutherland’s Sketchpad (1963), Alan Kay’s
Dynabook (1968), and the many artists featured in Ruth Leavitt’s Artist and
Computer 1 (Harmony Books, 1976). The ACM SIGGRAPH archives provide a
fascinating glimpse into the history of graphics and software.

Figure 1-3. Processing was inspired by great ideas and individuals over the
last four decades.

1 http://www.atariarchives.org/artist/

From library of Wow! eBook

Hello 5

Family Tree
Like human languages, programming languages belong to families of
related languages. Processing is a dialect of a programming language
called Java; the language syntax is almost identical, but Processing adds
custom features related to graphics and interaction (Figure 1-4). The
graphic elements of Processing are related to PostScript (a foundation of
PDF) and OpenGL (a 3D graphics specification). Because of these shared
features, learning Processing is an entry-level step to programming in
other languages and using different software tools.

Figure 1-4. Processing has a large family of related languages and
programming environments.

From library of Wow! eBook

6 Getting Started with Processing

Join In
Thousands of people use Processing every day. Like them, you can
download Processing without cost. You even have the option to modify
the Processing code to suit your needs. Processing is a FLOSS project
(that is, free/libre/open source software), and in the spirit of community,
we encourage you to participate by sharing your projects and know
ledge online at Processing.org and at the many social networking sites
that host Processing content (Figure 1-5). These sites are linked from
the Processing.org website.

Figure 1-5. Processing is fueled by thousands of people contributing through
the Internet. This is our rendition of how they all relate to one another.

From library of Wow! eBook

 7

2/Starting to Code

To get the most out of this book, you need to
do more than just read the words. You need
to experiment and practice. You can’t learn
to code just by reading about it—you need
to do it. To get started, download Processing
and make your first sketch.

Start by visiting http://processing.org/download and selecting the Mac,
Windows, or Linux version, depending on what machine you have. Instal-
lation on each machine is straightforward:

»» On Windows, you’ll have a .zip file. Double-click it, and drag the folder in-
side to a location on your hard disk. It could be Program Files or simply
the desktop, but the important thing is for the processing folder to be
pulled out of that .zip file. Then double-click processing.exe to start.

»» The Mac OS X version is a disk image (.dmg) file. Drag the Processing
icon to the Applications folder. If you’re using someone else’s machine
and can’t modify the Applications folder, just drag the application to the
desktop. Then double-click the Processing icon to start.

»» The Linux version is a .tar.gz file, which should be familiar to most Linux
users. Download the file to your home directory, then open a terminal
window, and type:

tar xvfz processing-xxxx.tgz

(Replace xxxx with the rest of the file’s name, which is the version
number.) This will create a folder named processing-1.0 or something
similar. Then change to that directory:

cd processing-xxxx

From library of Wow! eBook

8 Getting Started with Processing

and run it:

./processing

With any luck, the main Processing window will now be visible (Figure 2-1).
Everyone’s setup is different, so if the program didn’t start, or you’re
otherwise stuck, visit the troubleshooting page for possible solutions:
http://wiki.processing.org/index.php/Troubleshooting.

Figure 2-1. The Processing Development Environment.

Your First Program
You’re now running the Processing Development Environment (or PDE).
There’s not much to it; the large area is the Text Editor, and there’s a row
of buttons across the top; this is the toolbar. Below the editor is the Mes-
sage Area, and below that is the Console. The Message Area is used for
one-line messages, and the Console is used for more technical details.

From library of Wow! eBook

Starting to Code 9

Example 2-1: Draw an Ellipse

In the editor, type the following:

ellipse(50, 50, 80, 80);

This line of code means “draw an ellipse, with the center 50 pixels over
from the left and 50 pixels down from the top, with a width and height of
80 pixels.” Click the Run button, which looks like this:

If you’ve typed everything correctly, you’ll see the ellipse image above. If
you didn’t type it correctly, the Message Area will turn red and complain
about an error. If this happens, make sure that you’ve copied the exam-
ple code exactly: the numbers should be contained within parentheses
and have commas between each of them, and the line should end with a
semicolon.

One of the most difficult things about getting started with programming
is that you have to be very specific about the syntax. The Processing
software isn’t always smart enough to know what you mean, and can be
quite fussy about the placement of punctuation. You’ll get used to it with a
little practice.

Next, we’ll skip ahead to a sketch that’s a little more exciting.

From library of Wow! eBook

10 Getting Started with Processing

Example 2-2: Make Circles

Delete the text from the last example, and try this one:

void setup() {

 size(480, 120);

 smooth();

}

void draw() {

 if (mousePressed) {

 fill(0);

 } else {

 fill(255);

 }

 ellipse(mouseX, mouseY, 80, 80);

}

This program creates a window that is 480 pixels wide and 120 pixels
high, and then starts drawing white circles at the position of the mouse.
When a mouse button is pressed, the circle color changes to black. We’ll
explain more about the elements of this program in detail later. For now,
run the code, move the mouse, and click to experience it.

Show
So far we’ve covered only the Run button, though you’ve probably
guessed what the Stop button next to it does:

From library of Wow! eBook

Starting to Code 11

If you don’t want to use the buttons, you can always use the Sketch menu,
which reveals the shortcut Ctrl-R (or Cmd-R on the Mac) for Run. Below
Run in the Sketch menu is Present, which clears the rest of the screen to
present your sketch all by itself:

You can also use Present from the toolbar by holding down the Shift key
as you click the Run button.

Save
The next command that’s important is Save. It’s the downward arrow on
the toolbar:

You can also find it under the File menu. By default, your programs are
saved to the “sketchbook,” which is a folder that collects your programs
for easy access. Clicking the Open button on the toolbar (the arrow
pointing up) will bring up a list of all the sketches in your sketchbook, as
well as a list of examples that are installed with the Processing software:

It’s always a good idea to save your sketches often. As you try different
things, keep saving with different names, so that you can always go back
to an earlier version. This is especially helpful if—no, when—something
breaks. You can also see where the sketch is located on the disk with
Show Sketch Folder under the Sketch menu.

From library of Wow! eBook

12 Getting Started with Processing

You can also create a new sketch by pressing the New button on the
toolbar:

This will replace the sketch in the current window with an empty one.
Holding down Shift when you press the New button will create a new
sketch in its own window, as will selecting File➝New. The Open button
works the same way.

Share
Another theme of Processing is sharing your work. The Export button on
the toolbar:

will bundle your code into a single folder titled applet that can be uploaded
to a web server (Figure 2-2). After exporting, the applet folder will open on
your desktop. The PDE file is the source code, the JAR file is the program,
the HTML file is the web page, and the GIF file is displayed in the web
browser while the program is loading. Double-clicking the index.html file
will launch your web browser and show your sketch on the web page it has
created.

Figure 2-2. The applet folder contains the exported sketch.

From library of Wow! eBook

Starting to Code 13

NOTE: The applet folder is erased and recreated each time you use the
Export command, so be sure to move the folder elsewhere before you
make any changes to the HTML file or anything else inside.

You can also find Export, along with its sibling Export to Application,
underneath the File menu. Export to Application creates an application for
your choice of Mac, Windows, and/or Linux. This is an easy way to make
self-contained, double-clickable versions of your projects (Figure 2-3).

Figure 2-3. Export to Application menu.

Holding down Shift when you press the Export button on the toolbar is
another way to use Export to Application.

Examples and Reference
Learning how to program with Processing involves exploring lots of code:
running, altering, breaking, and enhancing it until you have reshaped it
into something new. With this in mind, the Processing software download
includes dozens of examples that demonstrate different features of the
software. To open an example, select Examples from the File menu or
click the Open icon in the PDE. The examples are grouped into categories
based on their function, such as Form, Motion, and Image. Find an inter-
esting topic in the list and try an example.

From library of Wow! eBook

14 Getting Started with Processing

If you see a part of the program you’re unfamiliar with that is colored
orange (this means it’s a part of Processing), select its name, and then
click on “Find in Reference” from the Help menu. You can also right-click
the text (or Ctrl-click on a Mac) and choose Find in Reference from the
menu that appears. This will open the reference for the selected code
element in your web browser. The reference is also available online at
http://www.processing.org/reference/.

The Processing Reference explains every code element with a description
and examples. The reference programs are much shorter (usually four or
five lines) and easier to follow than the longer code found in the Examples
folder. We recommend keeping the reference open while you’re reading
this book and while you’re programming. It can be navigated by topic
or alphabetically; sometimes it’s fastest to do a text search within your
browser window.

The reference was written with the beginner in mind; we hope that we’ve
made it clear and understandable. We’re grateful to the many people
who’ve spotted errors over the years and reported them. If you think you
can improve a reference entry or you find a mistake, please let us know by
clicking on the link at the top of each reference page.

From library of Wow! eBook

 15

3/Draw

At first, drawing on a computer screen is like
working on graph paper. It starts as a careful
technical procedure, but as new concepts
are introduced, drawing simple shapes
with software expands into animation and
interaction. Before we make this jump, we
need to start at the beginning.

A computer screen is a grid of light elements called pixels. Each pixel
has a position within the grid defined by coordinates. In Processing, the
x-coordinate is the distance from the left edge of the Display Window and
the y-coordinate is the distance from the top edge. We write coordinates
of a pixel like this: (x, y). So, if the screen is 200×200 pixels, the upper-
left is (0, 0), the center is at (100, 100), and the lower-right is (199, 199).
These numbers may seem confusing; why do we go from 0 to 199 instead
of 1 to 200? The answer is that in code, we usually count from 0 because
it’s easier for calculations that we’ll get into later.

The Display Window is created and images are drawn inside through code
elements called functions. Functions are the basic building blocks of a Pro-
cessing program. The behavior of a function is defined by its parameters.
For example, almost every Processing program has a size() function to set
the width and height of the Display Window. (If your program doesn’t have
a size() function, the dimension is set to 100×100 pixels.)

From library of Wow! eBook

16 Getting Started with Processing

Example 3-1: Draw a Window

The size() function has two parameters: the first sets the width of the win-
dow and the second sets the height. To draw a window that is 800 pixels
wide and 600 high, write:

size(800, 600);

Run this line of code to see the result. Put in different values to see what’s
possible. Try very small numbers and numbers larger than your screen.

Example 3-2: Draw a Point

To set the color of a single pixel within the Display Window, we use the
point() function. It has two parameters that define a position: the
x-coordinate followed by the y-coordinate. To draw a little window and a
point at the center of the screen, coordinate (240, 60), type:

size(480, 120);

point(240, 60);

Try to write a program that puts a point at each corner of the Display
Window and one in the center. Try placing points side by side to make
horizontal, vertical, and diagonal lines.

Basic Shapes
Processing includes a group of functions to draw basic shapes (see Figure
3-1). Simple shapes like lines can be combined to create more complex
forms like a leaf or a face.

To draw a single line, we need four parameters: two for the starting loca-
tion and two for the end.

From library of Wow! eBook

Draw 17

Figure 3-1. Coordinates and shapes.

From library of Wow! eBook

18 Getting Started with Processing

Example 3-3: Draw a Line

To draw a line between coordinate (20, 50) and (420,110), try:

size(480, 120);

line(20, 50, 420, 110);

Example 3-4: Draw Basic Shapes

Following this pattern, a triangle needs six parameters and a quadrilateral
needs eight (one pair for each point):

size(480, 120);

quad(158, 55, 199, 14, 392, 66, 351, 107);

triangle(347, 54, 392, 9, 392, 66);

triangle(158, 55, 290, 91, 290, 112);

From library of Wow! eBook

Draw 19

Example 3-5: Draw a Rectangle

Rectangles and ellipses are both defined with four parameters: the first
and second are for the x- and y-coordinates of the anchor point, the third
for the width, and the fourth for the height. To make a rectangle at
coordinate (180, 60) with a width of 220 pixels and height of 40, use the
rect() function like this:

size(480, 120);

rect(180, 60, 220, 40);

Example 3-6: Draw an Ellipse

The x- and y-coordinates for a rectangle are the upper-left corner, but for
an ellipse they are the center of the shape. In this example, notice that the
y-coordinate for the first ellipse is outside the window. Objects can be
drawn partially (or entirely) out of the window without an error:

size(480, 120);

ellipse(278, -100, 400, 400);

ellipse(120, 100, 110, 110);

ellipse(412, 60, 18, 18);

Processing doesn’t have separate functions to make squares and circles.
To make these shapes, use the same value for the width and the height
parameters to ellipse() and rect().

From library of Wow! eBook

20 Getting Started with Processing

Example 3-7: Draw Part of an Ellipse

The arc() function draws a piece of an ellipse:

size(480, 120);

arc(90, 60, 80, 80, 0, HALF_PI);

arc(190, 60, 80, 80, 0, PI+HALF_PI);

arc(290, 60, 80, 80, PI, TWO_PI+HALF_PI);

arc(390, 60, 80, 80, QUARTER_PI, PI+QUARTER_PI);

The first and second parameters set the location, the third and fourth
set the width and height. The fifth parameter sets the angle to start the
arc, and the sixth sets the angle to stop. The angles are set in radians,
rather than degrees. Radians are angle measurements based on the value
of pi (3.14159). Figure 3-2 shows how the two relate. As featured in this
example, four radian values are used so frequently that special names for
them were added as a part of Processing. The values PI, QUARTER_PI,
HALF_PI, and TWO_PI can be used to replace the radian values for 180º,
45º, 90º, and 360º.

From library of Wow! eBook

Draw 21

Figure 3-2. Radian and degrees measurements.

From library of Wow! eBook

22 Getting Started with Processing

Example 3-8: Draw with Degrees

If you prefer to use degree measurements, you can convert to radians
with the radians() function. This function takes an angle in degrees and
changes it to the corresponding radian value. The following example is the
same as Example 3-7, but it uses the radians() function to define the start
and stop values in degrees:

size(480, 120);

arc(90, 60, 80, 80, 0, radians(90));

arc(190, 60, 80, 80, 0, radians(270));

arc(290, 60, 80, 80, radians(180), radians(450));

arc(390, 60, 80, 80, radians(45), radians(225));

Drawing Order
When a program runs, the computer starts at the top and reads each line
of code until it reaches the last line and then stops. If you want a shape
to be drawn on top of all other shapes, it needs to follow the others in the
code.

Example 3-9: Control Your Drawing Order

size(480, 120);

ellipse(140, 0, 190, 190);

// The rectangle draws on top of the ellipse

// because it comes after in the code

rect(160, 30, 260, 20);

From library of Wow! eBook

Draw 23

Example 3-10: Put It in Reverse

Modify Example 3-9 by reversing the order of rect() and ellipse() to see
the circle on top of the rectangle:

size(480, 120);

rect(160, 30, 260, 20);

// The ellipse draws on top of the rectangle

// because it comes after in the code

ellipse(140, 0, 190, 190);

You can think of it like painting with a brush or making a collage. The last
element that you add is what’s visible on top.

Shape Properties
The most basic and useful shape properties are stroke weight and anti-
aliasing, also called smoothing.

Example 3-11: Draw Smooth Lines

The smooth() function smooths the edges of lines drawn to the screen by
blending the edges with the nearby pixel values. Conversely, if smoothing
is already turned on, the noSmooth() function will turn it off:

From library of Wow! eBook

24 Getting Started with Processing

size(480, 120);

smooth(); // Turns on smoothing

ellipse(140, 60, 90, 90);

noSmooth(); // Turns off smoothing

ellipse(240, 60, 90, 90);

NOTE: Some implementations of Processing (such as the version
for JavaScript) will always smooth shapes; others might not support
smoothing at all. In some situations, it’s not possible to enable and dis-
able smoothing within the same trip through draw(). See the smooth()
reference for more details.

Example 3-12: Set Stroke Weight

The default stroke weight is a single pixel, but this can be changed with
the strokeWeight() function. The single parameter to strokeWeight() sets
the width of drawn lines:

size(480, 120);

smooth();

ellipse(75, 60, 90, 90);

strokeWeight(8); // Stroke weight to 8 pixels

ellipse(175, 60, 90, 90);

ellipse(279, 60, 90, 90);

strokeWeight(20); // Stroke weight to 20 pixels

ellipse(389, 60, 90, 90);

From library of Wow! eBook

Draw 25

Example 3-13: Set Stroke Attributes

The strokeJoin() function changes the way lines are joined (how the
corners look), and the strokeCap() function changes how lines are drawn
at their beginning and end:

size(480, 120);

smooth();

strokeWeight(12);

strokeJoin(ROUND); // Round the stroke corners

rect(40, 25, 70, 70);

strokeJoin(BEVEL); // Bevel the stroke corners

rect(140, 25, 70, 70);

strokeCap(SQUARE); // Square the line endings

line(270, 25, 340, 95);

strokeCap(ROUND); // Round the line endings

line(350, 25, 420, 95);

The placement of shapes like rect() and ellipse() is controlled with
the rectMode() and ellipseMode() functions. Check the reference
(Help➝Reference) to see examples of how to place rectangles from their
center (rather than their upper-left corner), or to draw ellipses from their
upper-left corner like rectangles.

When any of these attributes are set, all shapes drawn afterward are
affected. For instance, in Example 3-12, notice how the second and third
circles both have the same stroke weight, even though the weight is set
only once before both are drawn.

From library of Wow! eBook

26 Getting Started with Processing

Color
All the shapes so far have been filled white with black outlines, and the
background of the Display Window has been light gray. To change them,
use the background(), fill(), and stroke() functions. The values of the
parameters are in the range of 0 to 255, where 255 is white, 128 is
medium gray, and 0 is black. Figure 3-3 shows how the values from 0 to
255 map to different gray levels.

Figure 3-3. Gray values from 0 to 255.

From library of Wow! eBook

Draw 27

Example 3-14: Paint with Grays

This example shows three different gray values on a black background:

size(480, 120);

smooth();

background(0); // Black

fill(204); // Light gray

ellipse(132, 82, 200, 200); // Light gray circle

fill(153); // Medium gray

ellipse(228, -16, 200, 200); // Medium gray circle

fill(102); // Dark gray

ellipse(268, 118, 200, 200); // Dark gray circle

Example 3-15: Control Fill and Stroke

You can disable the stroke so that there’s no outline with noStroke() and
you can disable the fill of a shape with noFill():

size(480, 120);

smooth();

fill(153); // Medium gray

ellipse(132, 82, 200, 200); // Gray circle

noFill(); // Turn off fill

ellipse(228, -16, 200, 200); // Outline circle

noStroke(); // Turn off stroke

ellipse(268, 118, 200, 200); // Doesn’t draw!

Be careful not to disable the fill and stroke at the same time, as we’ve
done in the previous example, because nothing will draw to the screen.

From library of Wow! eBook

28 Getting Started with Processing

Example 3-16: Draw with Color

To move beyond grayscale values, you use three parameters to specify
the red, green, and blue components of a color. Because this book is
printed in black and white, you’ll see only gray value here. Run the code in
Processing to reveal the colors:

size(480, 120);

noStroke();

smooth();

background(0, 26, 51); // Dark blue color

fill(255, 0, 0); // Red color

ellipse(132, 82, 200, 200); // Red circle

fill(0, 255, 0); // Green color

ellipse(228, -16, 200, 200); // Green circle

fill(0, 0, 255); // Blue color

ellipse(268, 118, 200, 200); // Blue circle

This is referred to as RGB color, which comes from how computers
define colors on the screen. The three numbers stand for the values of
red, green, and blue, and they range from 0 to 255 the way that the gray
values do. Using RGB color isn’t very intuitive, so to choose colors, use
Tools➝Color Selector, which shows a color palette similar to those found
in other software (see Figure 3-4). Select a color, and then use the R, G,
and B values as the parameters for your background(), fill(), or stroke()
function.

From library of Wow! eBook

Draw 29

Figure 3-4. Processing Color Selector.

Example 3-17: Set Transparency

By adding an optional fourth parameter to fill() or stroke(), you can
control the transparency. This fourth parameter is known as the alpha
value, and also uses the range 0 to 255 to set the amount of transparency.
The value 0 defines the color as entirely transparent (it won’t display), the
value 255 is entirely opaque, and the values between these extremes
cause the colors to mix on screen:

From library of Wow! eBook

30 Getting Started with Processing

size(480, 120);

noStroke();

smooth();

background(204, 226, 225); // Light blue color

fill(255, 0, 0, 160); // Red color

ellipse(132, 82, 200, 200); // Red circle

fill(0, 255, 0, 160); // Green color

ellipse(228, -16, 200, 200); // Green circle

fill(0, 0, 255, 160); // Blue color

ellipse(268, 118, 200, 200); // Blue circle

Custom Shapes
You’re not limited to using these basic geometric shapes—you can also
define new shapes by connecting a series of points.

Example 3-18: Draw an Arrow

The beginShape() function signals the start of a new shape. The vertex()
function is used to define each pair of x- and y-coordinates for the shape.
Finally, endShape() is called to signal that the shape is finished.

size(480, 120);

beginShape();

vertex(180, 82);

vertex(207, 36);

vertex(214, 63);

vertex(407, 11);

vertex(412, 30);

vertex(219, 82);

vertex(226, 109);

endShape();

From library of Wow! eBook

Draw 31

Example 3-19: Close the Gap

When you run Example 3-18, you’ll see the first and last point are not
connected. To do this, add the word CLOSE as a parameter to endShape(),
like this:

size(480, 120);

beginShape();

vertex(180, 82);

vertex(207, 36);

vertex(214, 63);

vertex(407, 11);

vertex(412, 30);

vertex(219, 82);

vertex(226, 109);

endShape(CLOSE);

Example 3-20: Create Some Creatures

The power of defining shapes with vertex() is the ability to make shapes
with complex outlines. Processing can draw thousands and thousands of
lines at a time to fill the screen with fantastic shapes that spring from your
imagination. A modest but more complex example follows:

size(480, 120);

smooth();

// Left creature

beginShape();

vertex(50, 120);

From library of Wow! eBook

32 Getting Started with Processing

vertex(100, 90);

vertex(110, 60);

vertex(80, 20);

vertex(210, 60);

vertex(160, 80);

vertex(200, 90);

vertex(140, 100);

vertex(130, 120);

endShape();

fill(0);

ellipse(155, 60, 8, 8);

// Right creature

fill(255);

beginShape();

vertex(370, 120);

vertex(360, 90);

vertex(290, 80);

vertex(340, 70);

vertex(280, 50);

vertex(420, 10);

vertex(390, 50);

vertex(410, 90);

vertex(460, 120);

endShape();

fill(0);

ellipse(345, 50, 10, 10);

From library of Wow! eBook

Draw 33

Comments
The examples in this chapter use double slashes (//) at the end of a line
to add comments to the code. Comments are parts of the program that
are ignored when the program is run. They are useful for making notes for
yourself that explain what’s happening in the code. If others are reading
your code, comments are especially important to help them understand
your thought process.

Comments are also especially useful for a number of different options,
such as when trying to choose the right color. So, for instance, I might be
trying to find just the right red for an ellipse:

size(200, 200);

fill(165, 57, 57);

ellipse(100, 100, 80, 80);

Now suppose I want to try a different red, but don’t want to lose the old
one. I can copy and paste the line, make a change, and then “comment
out” the old one:

size(200, 200);

//fill(165, 57, 57);

fill(144, 39, 39);

ellipse(100, 100, 80, 80);

Placing // at the beginning of the line temporarily disables it. Or I can
remove the // and place it in front of the other line if I want to try it again:

size(200, 200);

fill(165, 57, 57);

//fill(144, 39, 39);

ellipse(100, 100, 80, 80);

NOTE: As a shortcut, you can also use Ctrl-/ (Cmd-/ on the Mac) to add
or remove comments from the current line or a selected block of text. You
can also comment out many lines at a time with the alternative comment
notation introduced in Appendix A.

As you work with Processing sketches, you’ll find yourself creating dozens
of iterations of ideas; using comments to make notes or to disable code
can help you keep track of multiple options.

From library of Wow! eBook

34 Getting Started with Processing

Robot 1: Draw

This is P5, the Processing Robot. There are eight different programs to
draw and animate him in the book—each one explores a different pro-
gramming idea. P5’s design was inspired by Sputnik I (1957), Shakey from
the Stanford Research Institute (1966–1972), the fighter drone in David
Lynch’s Dune (1984), and HAL 9000 from 2001: A Space Odyssey (1968),
among other robot favorites.

The first robot program uses the drawing functions introduced in the pre-
vious chapter. The parameters to the fill() and stroke() functions set the
gray values. The line(), ellipse(), and rect() functions define the shapes
that create the robot’s neck, antennae, body, and head. To get more famil-
iar with the functions, run the program and change the values to redesign
the robot:

From library of Wow! eBook

Draw 35

size(720, 480);

smooth();

strokeWeight(2);

background(204);

ellipseMode(RADIUS);

// Neck

stroke(102); // Set stroke to gray

line(266, 257, 266, 162); // Left

line(276, 257, 276, 162); // Middle

line(286, 257, 286, 162); // Right

// Antennae

line(276, 155, 246, 112); // Small

line(276, 155, 306, 56); // Tall

line(276, 155, 342, 170); // Medium

// Body

noStroke(); // Disable stroke

fill(102); // Set fill to gray

ellipse(264, 377, 33, 33); // Antigravity orb

fill(0); // Set fill to black

rect(219, 257, 90, 120); // Main body

fill(102); // Set fill to gray

rect(219, 274, 90, 6); // Gray stripe

// Head

fill(0); // Set fill to black

ellipse(276, 155, 45, 45); // Head

fill(255); // Set fill to white

ellipse(288, 150, 14, 14); // Large eye

fill(0); // Set fill to black

ellipse(288, 150, 3, 3); // Pupil

fill(153); // Set fill to light gray

ellipse(263, 148, 5, 5); // Small eye 1

ellipse(296, 130, 4, 4); // Small eye 2

ellipse(305, 162, 3, 3); // Small eye 3

From library of Wow! eBook

From library of Wow! eBook

 37

4/Variables

A variable stores a value in memory so that it
can be used later in a program. The variable
can be used many times within a single
program, and the value is easily changed
while the program is running.

The primary reason we use variables is to avoid repeating ourselves in the
code. If you are typing the same number more than once, consider mak-
ing it into a variable to make your code more general and easier to update.

Example 4-1: Reuse the Same Values

For instance, when you make the y-coordinate and diameter for the two
circles in this example into variables, the same values are used for each
ellipse:

size(480, 120);

smooth();

int y = 60;

int d = 80;

ellipse(75, y, d, d); // Left

ellipse(175, y, d, d); // Middle

ellipse(275, y, d, d); // Right

From library of Wow! eBook

38 Getting Started with Processing

Example 4-2: Change Values

Simply changing the y and d variables therefore alters all three ellipses:

size(480, 120);

smooth();

int y = 100;

int d = 130;

ellipse(75, y, d, d); // Left

ellipse(175, y, d, d); // Middle

ellipse(275, y, d, d); // Right

Without the variables, you’d need to change the y-coordinate used in the
code three times and the diameter six times. When comparing Examples
4-1 and 4-2, notice how the bottom three lines are the same, and only the
middle two lines with the variables are different. Variables allow you to
separate the lines of the code that change from the lines that don’t, which
makes programs easier to modify. For instance, if you place variables
that control colors and sizes of shapes in one place, then you can quickly
explore different visual options by focusing on only a few lines of code.

From library of Wow! eBook

Variables 39

Making Variables
When you make your own variables, you determine the name, the data
type, and the value. The name is what you decide to call the variable.
Choose a name that is informative about what the variable stores, but be
consistent and not too verbose. For instance, the variable name “radius”
will be clearer than “r” when you look at the code later.

The range of values that can be stored within a variable is defined by its
data type. For instance, the integer data type can store numbers without
decimal places (whole numbers). In code, integer is abbreviated to int.
There are data types to store each kind of data: integers, floating-point
(decimal) numbers, characters, words, images, fonts, and so on.

Variables must first be declared, which sets aside space in the computer’s
memory to store the information. When declaring a variable, you also
need to specify its data type (such as int), which indicates what kind of
information is being stored. After the data type and name are set, a value
can be assigned to the variable:

int x; // Declare x as an int variable

x = 12; // Assign a value to x

This code does the same thing, but is shorter:

int x = 12; // Declare x as an int variable and assign a value

The name of the data type is included on the line of code that declares a
variable, but it’s not written again. Each time the data type is written in
front of the variable name, the computer thinks you’re trying to declare
a new variable. You can’t have two variables with the same name in the
same part of the program (see Appendix D), so the program has an error:

int x; // Declare x as an int variable

int x = 12; // ERROR! Can’t have two variables called x here

From library of Wow! eBook

40 Getting Started with Processing

Processing Variables
Processing has a series of special variables to store information about the
program while it runs. For instance, the width and height of the window
are stored in variables called width and height. These values are set by the
size() function. They can be used to draw elements relative to the size of
the window, even if the size() line changes.

Example 4-3: Adjust the Size, See What Follows

In this example, change the parameters to size() to see how it works:

size(480, 120);

smooth();

line(0, 0, width, height); // Line from (0,0) to (480, 120)

line(width, 0, 0, height); // Line from (480, 0) to (0, 120)

ellipse(width/2, height/2, 60, 60);

Other special variables keep track of the status of the mouse and key-
board values and much more. These are discussed in Chapter 5.

A Little Math
People often assume that math and programming are the same thing. Al-
though knowledge of math can be useful for certain types of coding, basic
arithmetic covers the most important parts.

From library of Wow! eBook

Variables 41

Example 4-4: Basic Arithmetic

size(480, 120);

int x = 25;

int h = 20;

int y = 25;

rect(x, y, 300, h); // Top

x = x + 100;

rect(x, y + h, 300, h); // Middle

x = x - 250;

rect(x, y + h*2, 300, h); // Bottom

In code, symbols like +, –, and * are called operators. When placed between
two values, they create an expression. For instance, 5 + 9 and 1024 – 512
are both expressions. The operators for the basic math operations are:

+	 Addition
–	 Subtraction
*	 Multiplication
/	 Division
=	 Assignment

Processing has a set of rules to define which operators take precedence
over others, meaning which calculations are made first, second, third,
and so on. These rules define the order in which the code is run. A little
knowledge about this goes a long way toward understanding how a short
line of code like this works:

int x = 4 + 4 * 5; // Assign 24 to x

From library of Wow! eBook

42 Getting Started with Processing

The expression 4 * 5 is evaluated first because multiplication has the
highest priority. Second, 4 is added to the product of 4 * 5 to yield 24.
Last, because the assignment operator (the equal symbol) has the lowest
precedence, the value 24 is assigned to the variable x. This is clarified with
parentheses, but the result is the same:

int x = 4 + (4 * 5); // Assign 24 to x

If you want to force the addition to happen first, just move the parentheses.
Because parentheses have a higher precedence than multiplication, the
order is changed and the calculation is affected:

int x = (4 + 4) * 5; // Assign 40 to x

An acronym for this order is often taught in math class: PEMDAS, which
stands for Parentheses, Exponents, Multiplication, Division, Addition,
Subtraction, where parentheses have the highest priority and subtraction
the lowest. The complete order of operations is found in Appendix C.

Some calculations are used so frequently in programming that short-
cuts have been developed; it’s always nice to save a few keystrokes.
For instance, you can add to a variable, or subtract from it, with a single
operator:

x += 10; // This is the same as x = x + 10

y -= 15; // This is the same as y = y - 15

It’s also common to add or subtract 1 from a variable, so shortcuts exist
for this as well. The ++ and –– operators do this:

x++; // This is the same as x = x + 1

y--; // This is the same as y = y - 1

More shortcuts can be found in the reference.

Repetition
As you write more programs, you’ll notice that patterns occur when lines
of code are repeated, but with slight variations. A code structure called a
for loop makes it possible to run a line of code more than once to con-
dense this type of repetition into fewer lines. This makes your programs
more modular and easier to change.

From library of Wow! eBook

Variables 43

Example 4-5: Do the Same Thing Over and Over

This example has the type of pattern that can be simplified with a for loop:

size(480, 120);

smooth();

strokeWeight(8);

line(20, 40, 80, 80);

line(80, 40, 140, 80);

line(140, 40, 200, 80);

line(200, 40, 260, 80);

line(260, 40, 320, 80);

line(320, 40, 380, 80);

line(380, 40, 440, 80);

Example 4-6: Use a for Loop

The same thing can be done with a for loop, and with less code:

size(480, 120);

smooth();

strokeWeight(8);

for (int i = 20; i < 400; i += 60) {

 line(i, 40, i + 60, 80);

}

The for loop is different in many ways from the code we’ve written so far.
Notice the braces, the { and } characters. The code between the braces
is called a block. This is the code that will be repeated on each iteration of
the for loop.

From library of Wow! eBook

44 Getting Started with Processing

Inside the parentheses are three statements, separated by semicolons,
that work together to control how many times the code inside the block is
run. From left to right, these statements are referred to as the initialization
(init), the test, and the update:

for (init; test; update) {

 statements

}

The init typically declares a new variable to use within the for loop and
assigns a value. The variable name i is frequently used, but there’s really
nothing special about it. The test evaluates the value of this variable, and
the update changes the variable’s value. Figure 4-1 shows the order in which
they run and how they control the code statements inside the block.

Figure 4-1. Flow diagram of a for loop.

The test statement requires more explanation. It’s always a relational
expression that compares two values with a relational operator. In this
example, the expression is “i < 400” and the operator is the < (less than)
symbol. The most common relational operators are:

>	 Greater than
<	 Less than
>=	 Greater than or equal to
<=	 Less than or equal to
==	 Equal to
!=	 Not equal to

The relational expression always evaluates to true or false. For instance,
the expression 5 > 3 is true. We can ask the question, “Is five greater
than three?” Because the answer is “yes,” we say the expression is true.

From library of Wow! eBook

Variables 45

For the expression 5 < 3, we ask, “Is five less than three?” Because the
answer is “no,” we say the expression is false. When the evaluation is true,
the code inside the block is run, and when it’s false, the code inside the
block is not run and the for loop ends.

Example 4-7: Flex Your for Loop’s Muscles

The ultimate power of working with a for loop is the ability to make quick
changes to the code. Because the code inside the block is typically run
multiple times, a change to the block is magnified when the code is run.
By modifying Example 4-6 only slightly, we can create a range of different
patterns:

size(480, 120);

smooth();

strokeWeight(2);

for (int i = 20; i < 400; i += 8) {

 line(i, 40, i + 60, 80);

}

Example 4-8: Fanning Out the Lines

size(480, 120);

smooth();

strokeWeight(2);

for (int i = 20; i < 400; i += 20) {

 line(i, 0, i + i/2, 80);

}

From library of Wow! eBook

46 Getting Started with Processing

Example 4-9: Kinking the Lines

size(480, 120);

smooth();

strokeWeight(2);

for (int i = 20; i < 400; i += 20) {

 line(i, 0, i + i/2, 80);

 line(i + i/2, 80, i*1.2, 120);

}

Example 4-10: Embed One for Loop in Another

When one for loop is embedded inside another, the number of repetitions
is multiplied. First, let’s look at a short example, and then we’ll break it
down in Example 4-11:

size(480, 120);

background(0);

smooth();

noStroke();

for (int y = 0; y <= height; y += 40) {

 for (int x = 0; x <= width; x += 40) {

 fill(255, 140);

 ellipse(x, y, 40, 40);

 }

}

From library of Wow! eBook

Variables 47

Example 4-11: Rows and Columns

In this example, the for loops are adjacent, rather than one embedded
inside the other. The result shows that one for loop is drawing a column of
4 circles and the other is drawing a row of 13 circles:

size(480, 120);

background(0);

smooth();

noStroke();

for (int y = 0; y < height+45; y += 40) {

 fill(255, 140);

 ellipse(0, y, 40, 40);

}

for (int x = 0; x < width+45; x += 40) {

 fill(255, 140);

 ellipse(x, 0, 40, 40);

}

When one of these for loops is placed inside the other, as in Example 4-10,
the 4 repetitions of the first loop are compounded with the 13 of the second
in order to run the code inside the embedded block 52 times (4×13 = 52).

Example 4-10 is a good base for exploring many types of repeating visual
patterns. The following examples show a couple of ways that it can be
extended, but this is only a tiny sample of what’s possible. In Example
4-12, the code draws a line from each point in the grid to the center of the
screen. In Example 4-13, the ellipses shrink with each new row and are
moved to the right by adding the y-coordinate to the x-coordinate.

From library of Wow! eBook

48 Getting Started with Processing

Example 4-12: Pins and Lines

size(480, 120);

background(0);

smooth();

fill(255);

stroke(102);

for (int y = 20; y <= height-20; y += 10) {

 for (int x = 20; x <= width-20; x += 10) {

 ellipse(x, y, 4, 4);

 // Draw a line to the center of the display

 line(x, y, 240, 60);

 }

}

Example 4-13: Halftone Dots

size(480, 120);

background(0);

smooth();

for (int y = 32; y <= height; y += 8) {

 for (int x = 12; x <= width; x += 15) {

 ellipse(x + y, y, 16 - y/10.0, 16 - y/10.0);

 }

}

From library of Wow! eBook

Variables 49

Robot 2: Variables

The variables introduced in this program make the code look more dif-
ficult than Robot 1 (see “Robot 1: Draw” in Chapter 3), but now it’s much
easier to modify, because numbers that depend on one another are in a
single location. For instance, the neck can be drawn based on the body-
Height variable. The group of variables at the top of the code control the
aspects of the robot that we want to change: location, body height, and
neck height. You can see some of the range of possible variations in the
figure; from left to right, here are the values that correspond to them:

y = 390

bodyHeight = 180

neckHeight = 40

y = 460

bodyHeight = 260

neckHeight = 95

y = 310

bodyHeight = 80

neckHeight = 10

 y = 420

 bodyHeight = 110

 neckHeight = 140

When altering your own code to use variables instead of numbers, plan
the changes carefully, then make the modifications in short steps. For
instance, when this program was written, each variable was created one
at a time to minimize the complexity of the transition. After a variable
was added and the code was run to ensure it was working, the next vari-
able was added:

From library of Wow! eBook

50 Getting Started with Processing

int x = 60; // x-coordinate

int y = 420; // y-coordinate

int bodyHeight = 110; // Body Height

int neckHeight = 140; // Neck Height

int radius = 45; // Head Radius

int ny = y - bodyHeight - neckHeight - radius; // Neck Y

size(170, 480);

smooth();

strokeWeight(2);

background(204);

ellipseMode(RADIUS);

// Neck

stroke(102);

line(x+2, y-bodyHeight, x+2, ny);

line(x+12, y-bodyHeight, x+12, ny);

line(x+22, y-bodyHeight, x+22, ny);

// Antennae

line(x+12, ny, x-18, ny-43);

line(x+12, ny, x+42, ny-99);

line(x+12, ny, x+78, ny+15);

// Body

noStroke();

fill(102);

ellipse(x, y-33, 33, 33);

fill(0);

rect(x-45, y-bodyHeight, 90, bodyHeight-33);

fill(102);

rect(x-45, y-bodyHeight+17, 90, 6);

// Head

fill(0);

ellipse(x+12, ny, radius, radius);

fill(255);

ellipse(x+24, ny-6, 14, 14);

fill(0);

ellipse(x+24, ny-6, 3, 3);

fill(153);

ellipse(x, ny-8, 5, 5);

ellipse(x+30, ny-26, 4, 4);

ellipse(x+41, ny+6, 3, 3);

From library of Wow! eBook

 51

5/Response

Code that responds to input from the mouse,
keyboard, and other devices has to run
continuously. To make this happen, place the
lines that update inside a Processing function
called draw().

Example 5-1: The draw() Function

To see how draw() works, run this example:

void draw() {

 // Displays the frame count to the Console

 println("I’m drawing");

 println(frameCount);

}

You’ll see the following:

I’m drawing

1

I’m drawing

2

I’m drawing

3

...

The code within the draw() block runs from top to bottom, then repeats
until you quit the program by clicking the Stop button or closing the win-
dow. Each trip through draw() is called a frame. (The default frame rate
is 60 frames per second, but this can be changed. See Example 7-2 for
more information.) In the previous example program, the println() func-
tions write the text “I’m drawing” followed by the current frame count as
counted by the special frameCount variable (1, 2, 3, …). The text appears
in the Console, the black area at the bottom of the Processing editor
window.

From library of Wow! eBook

52 Getting Started with Processing

Example 5-2: The setup() Function

To complement the looping draw() function, Processing has a function
called setup() that runs just once when the program starts:

void setup() {

 println("I’m starting");

}

void draw() {

 println("I’m running");

}

When this code is run, the following is written to the Console:

I’m starting

I’m running

I’m running

I’m running

...

The text “I’m running” continues to write to the Console until the program
is stopped.

In a typical program, the code inside setup() is used to define the starting
values. The first line is always the size() function, often followed by code
to set the starting fill and stroke colors, or perhaps to load images and
fonts. (If you don’t include the size() function, the Display Window will be
100×100 pixels.)

Now you know how to use setup() and draw(), but this isn’t the whole story.
There’s one more location to put code—you can also place variables out-
side of setup() and draw(). If you create a variable inside of setup(), you
can’t use it inside of draw(), so you need to place those variables some-
where else. Such variables are called global variables, because they can
be used anywhere (“globally”) in the program. This is clearer when we list
the order in which the code is run:

1.	 Variables declared outside of setup() and draw() are created.

2.	 Code inside setup() is run once.

3.	 Code inside draw() is run continuously.

From library of Wow! eBook

Response 53

Example 5-3: setup(), Meet draw()

The following example puts it all together:

int x = 280;

int y = -100;

int diameter = 380;

void setup() {

 size(480, 120);

 smooth();

 fill(102);

}

void draw() {

 background(204);

 ellipse(x, y, diameter, diameter);

}

Follow
Now that we have code running continuously, we can track the mouse
position and use those numbers to move elements on screen.

Example 5-4: Track the Mouse

The mouseX variable stores the x-coordinate, and the mouseY variable
stores the y-coordinate:

void setup() {

 size(480, 120);

 fill(0, 102);

 smooth();

 noStroke();

}

From library of Wow! eBook

54 Getting Started with Processing

void draw() {

 ellipse(mouseX, mouseY, 9, 9);

}

In this example, each time the code in the draw() block is run, a new
circle is drawn to the window. This image was made by moving the mouse
around to control the circle’s location. Because the fill is set to be partially
transparent, denser black areas show where the mouse spent more time
and where it moved slowly. The circles that are spaced farther apart show
when the mouse was moving faster.

Example 5-5: The Dot Follows You

In this example, a new circle is added to the window each time the code in
draw() is run. To refresh the screen and only display the newest circle,
place a background() function at the beginning of draw() before the shape
is drawn:

void setup() {

 size(480, 120);

 fill(0, 102);

 smooth();

 noStroke();

}

void draw() {

 background(204);

 ellipse(mouseX, mouseY, 9, 9);

}

The background() function clears the entire window, so be sure to always
place it before other functions inside draw(); otherwise, the shapes drawn
before it will be erased.

From library of Wow! eBook

Response 55

Example 5-6: Draw Continuously

The pmouseX and pmouseY variables store the position of the mouse at
the previous frame. Like mouseX and mouseY, these special variables are
updated each time draw() runs. When combined, they can be used to
draw continuous lines by connecting the current and most recent
location:

void setup() {

 size(480, 120);

 strokeWeight(4);

 smooth();

 stroke(0, 102);

}

void draw() {

 line(mouseX, mouseY, pmouseX, pmouseY);

}

Example 5-7: Set Thickness on the Fly

The pmouseX and pmouseY variables can also be used to calculate the
speed of the mouse. This is done by measuring the distance between the
current and most recent mouse location. If the mouse is moving slowly,
the distance is small, but if the mouse starts moving faster, the distance
grows. A function called dist() simplifies this calculation, as shown in the
following example. Here, the speed of the mouse is used to set the
thickness of the drawn line:

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

56 Getting Started with Processing

void setup() {

 size(480, 120);

 smooth();

 stroke(0, 102);

}

void draw() {

 float weight = dist(mouseX, mouseY, pmouseX, pmouseY);

 strokeWeight(weight);

 line(mouseX, mouseY, pmouseX, pmouseY);

}

Example 5-8: Easing Does It

In Example 5-7, the values from the mouse are converted directly into
positions on the screen. But sometimes you want the values to follow the
mouse loosely—to lag behind to create a more fluid motion. This tech-
nique is called easing. With easing, there are two values: the current value
and the value to move toward (see Figure 5-1). At each step in the pro-
gram, the current value moves a little closer to the target value:

float x;

float easing = 0.01;

float diameter = 12;

void setup() {

 size(220, 120);

 smooth();

}

void draw() {

 float targetX = mouseX;

 x += (targetX - x) * easing;

 ellipse(x, 40, 12, 12);

 println(targetX + " : " + x);

}

The value of the x variable is always getting closer to targetX. The speed at
which it catches up with targetX is set with the easing variable, a number be-
tween 0 and 1. A small value for easing causes more of a delay than a larger
value. With an easing value of 1, there is no delay. When you run Example
5-8, the actual values are shown in the Console through the println() func-
tion. When moving the mouse, notice how the numbers are far apart, but
when the mouse stops moving, the x value gets closer to targetX.

From library of Wow! eBook

Response 57

Figure 5-1. Easing.

All of the work in this example happens on the line that begins x +=.
There, the difference between the target and current value is calculated,
then multiplied by the easing variable and added to x to bring it closer to
the target.

Example 5-9: Smooth Lines with Easing

In this example, the easing technique is applied to Example 5-7. In com-
parison, the lines are smoother:

float x;

float y;

From library of Wow! eBook

58 Getting Started with Processing

float px;

float py;

float easing = 0.05;

void setup() {

 size(480, 120);

 smooth();

 stroke(0, 102);

}

void draw() {

 float targetX = mouseX;

 x += (targetX - x) * easing;

 float targetY = mouseY;

 y += (targetY - y) * easing;

 float weight = dist(x, y, px, py);

 strokeWeight(weight);

 line(x, y, px, py);

 py = y;

 px = x;

}

Map
When numbers are used to draw to the screen, it’s often useful to convert
the values from one range of numbers to another.

Example 5-10: Map Values to a Range

The mouseX variable is usually between 0 and the width of the window,
but you might want to remap those values to a different range of coordi-
nates. You can do this by making calculations like dividing mouseX by a
number to reduce its range and then adding or subtracting a number to
shift it left or right:

From library of Wow! eBook

Response 59

void setup() {

 size(240, 120);

 strokeWeight(12);

 smooth();

}

void draw() {

 background(204);

 stroke(255);

 line(120, 60, mouseX, mouseY); // White line

 stroke(0);

 float mx = mouseX/2 + 60;

 line(120, 60, mx, mouseY); // Black line

}

The map() function is a more general way to make this type of change.
It converts a variable from one range of numbers to another. The first
parameter is the variable to be converted, the second and third param-
eters are the low and high values of that variable, and the fourth and fifth
parameters are the desired low and high values. The map() function hides
the math behind the conversion.

Example 5-11: Map with the map() Function

This example rewrites Example 5-10 using map():

void setup() {

 size(240, 120);

 strokeWeight(12);

 smooth();

}

void draw() {

 background(204);

 stroke(255);

 line(120, 60, mouseX, mouseY); // White line

 stroke(0);

 float mx = map(mouseX, 0, width, 60, 180);

 line(120, 60, mx, mouseY); // Black line

}

The map() function makes the code easy to read, because the minimum
and maximum values are clearly written as the parameters. In this exam-
ple, mouseX values between 0 and width are converted to a number from

From library of Wow! eBook

60 Getting Started with Processing

60 (when mouseX is 0) up to 180 (when mouseX is width). You’ll find the
useful map() function in many examples throughout this book.

Click
In addition to the location of the mouse, Processing also keeps track of
whether the mouse button is pressed. The mousePressed variable has a
different value when the mouse button is pressed and when it is not. The
mousePressed variable is a data type called boolean, which means that it
has only two possible values: true and false. The value of mousePressed is
true when a button is pressed.

Example 5-12: Click the Mouse

The mousePressed variable is used along with the if statement to deter-
mine when a line of code will run and when it won’t. Try this example
before we explain further:

void setup() {

 size(240, 120);

 smooth();

 strokeWeight(30);

}

void draw() {

 background(204);

 stroke(102);

 line(40, 0, 70, height);

 if (mousePressed == true) {

 stroke(0);

 }

 line(0, 70, width, 50);

}

From library of Wow! eBook

Response 61

In this program, the code inside the if block runs only when a mouse but-
ton is pressed. When a button is not pressed, this code is ignored. Like the
for loop discussed in “Repetition” in Chapter 4, the if also has a test that is
evaluated to true or false:

if (test) {

 statements

}

When the test is true, the code inside the block is run; when the test is
false, the code inside the block is not run. The computer determines
whether the test is true or false by evaluating the expression inside the
parentheses. (If you’d like to refresh your memory, the discussion of rela-
tional expressions is with Example 4-6.)

The == symbol compares the values on the left and right to test whether
they are equivalent. This == symbol is different from the assignment
operator, the single = symbol. The == symbol asks, “Are these things
equal?” and the = symbol sets the value of a variable.

NOTE: It’s a common mistake, even for experienced programmers, to
write = in your code when you mean to write ==. The Processing software
won’t always warn you when you do this, so be careful.

Alternatively, the test in draw() in Example 5-12 can be written like this:

if (mousePressed) {

Boolean variables, including mousePressed, don’t need the explicit com-
parison with the == operator, because they can be only true or false.

From library of Wow! eBook

62 Getting Started with Processing

Example 5-13: Detect When Not Clicked

A single if block gives you the choice of running some code or skipping it.
You can extend an if block with an else block, allowing your program to
choose between two options. The code inside the else block runs when
the value of the if block test is false. For instance, the stroke color for a
program can be white when the mouse button is not pressed, and can
change to black when the button is pressed:

void setup() {

 size(240, 120);

 smooth();

 strokeWeight(30);

}

void draw() {

 background(204);

 stroke(102);

 line(40, 0, 70, height);

 if (mousePressed) {

 stroke(0);

 } else {

 stroke(255);

 }

 line(0, 70, width, 50);

}

From library of Wow! eBook

Response 63

Example 5-14: Multiple Mouse Buttons

Processing also tracks which button is pressed if you have more than one
button on your mouse. The mouseButton variable can be one of three
values: LEFT, CENTER, or RIGHT. To test which button was pressed, the
== operator is needed, as shown here:

void setup() {

 size(120, 120);

 smooth();

 strokeWeight(30);

}

void draw() {

 background(204);

 stroke(102);

 line(40, 0, 70, height);

 if (mousePressed) {

 if (mouseButton == LEFT) {

 stroke(255);

 } else {

 stroke(0);

 }

 line(0, 70, width, 50);

 }

}

A program can have many more if and else structures (see Figure 5-2) than
those found in these short examples. They can be chained together into a
long series with each testing for something different, and if blocks can be
embedded inside of other if blocks to make more complex decisions.

From library of Wow! eBook

64 Getting Started with Processing

Figure 5-2. The if and else structure makes decisions about which blocks of
code to run.

Location
An if structure can be used with the mouseX and mouseY values to deter-
mine the location of the cursor within the window.

From library of Wow! eBook

Response 65

Example 5-15: Find the Cursor

For instance, this example tests to see whether the cursor is on the left or
right side of a line and then moves the line toward the cursor:

float x;

int offset = 10;

void setup() {

 size(240, 120);

 smooth();

 x = width/2;

}

void draw() {

 background(204);

 if (mouseX > x) {

 x += 0.5;

 offset = -10;

 }

 if (mouseX < x) {

 x -= 0.5;

 offset = 10;

 }

 line(x, 0, x, height);

 line(mouseX, mouseY, mouseX + offset, mouseY - 10);

 line(mouseX, mouseY, mouseX + offset, mouseY + 10);

 line(mouseX, mouseY, mouseX + offset*3, mouseY);

}

To write programs that have graphical user interfaces (buttons, check-
boxes, scrollbars, and so on), we need to write code that knows when the
cursor is within an enclosed area of the screen. The following two ex-
amples introduce how to check whether the cursor is inside a circle and a
rectangle. The code is written in a modular way with variables, so it can be
used to check for any circle and rectangle by changing the values.

From library of Wow! eBook

66 Getting Started with Processing

Example 5-16: The Bounds of a Circle

For the circle test, we use the dist() function to get the distance from the
center of the circle to the cursor, then we test to see if that distance is less
than the radius of the circle (see Figure 5-3). If it is, we know we’re inside.
In this example, when the cursor is within the area of the circle, its size
increases:

int x = 120;

int y = 60;

int radius = 12;

void setup() {

 size(240, 120);

 smooth();

 ellipseMode(RADIUS);

}

void draw() {

 background(204);

 float d = dist(mouseX, mouseY, x, y);

 if (d < radius) {

 radius++;

 fill(0);

 } else {

 fill(255);

 }

 ellipse(x, y, radius, radius);

}

From library of Wow! eBook

Response 67

Figure 5-3. Circle rollover test.

Example 5-17: The Bounds of a Rectangle

We use another approach to test whether the cursor is inside a rectangle.
We make four separate tests to check if the cursor is on the correct side
of each edge of the rectangle, then we compare each test and if they are
all true, we know the cursor is inside. This is illustrated in Figure 5-4. Each
step is simple, but it looks complicated when it’s all put together:

From library of Wow! eBook

68 Getting Started with Processing

int x = 80;

int y = 30;

int w = 80;

int h = 60;

void setup() {

 size(240, 120);

}

void draw() {

 background(204);

 if ((mouseX > x) && (mouseX < x+w) &&

 (mouseY > y) && (mouseY < y+h)) {

 fill(0);

 } else {

 fill(255);

 }

 rect(x, y, w, h);

}

The test in the if statement is a little more complicated than we’ve seen.
Four individual tests (e.g., mouseX > x) are combined with the logical AND
operator, the && symbol, to ensure that every relational expression in the
sequence is true. If one of them is false, the entire test is false and the fill
color won’t be set to black. This is explained further in the reference entry
for &&.

Type
Processing keeps track of when any key on a keyboard is pressed, as well as
the last key pressed. Like the mousePressed variable, the keyPressed vari-
able is true when any key is pressed, and false when no keys are pressed.

From library of Wow! eBook

Response 69

Figure 5-4. Rectangle rollover test.

From library of Wow! eBook

70 Getting Started with Processing

Example 5-18: Tap a Key

In this example, the second line is drawn only when a key is pressed:

void setup() {

 size(240, 120);

 smooth();

}

void draw() {

 background(204);

 line(20, 20, 220, 100);

 if (keyPressed) {

 line(220, 20, 20, 100);

 }

}

The key variable stores the most recent key that has been pressed.
The data type for key is char, which is short for “character” but usually
pronounced like the first syllable of “charcoal.” A char variable can store
any single character, which includes letters of the alphabet, numbers, and
symbols. Unlike a string value (see Example 6-8), which is distinguished
by double quotes, the char data type is specified by single quotes. This is
how a char variable is declared and assigned:

char c = 'A'; // Declares and assigns 'A' to the variable c

And these attempts will cause an error:

char c = "A"; // Error! Can't assign a String to a char

char h = A; // Error! Missing the single quotes from 'A'

From library of Wow! eBook

Response 71

Unlike the boolean variable keyPressed, which reverts to false each time
a key is released, the key variable keeps its value until the next key is
pressed. The following example uses the value of key to draw the charac-
ter to the screen. Each time a new key is pressed, the value updates and
a new character draws. Some keys, like Shift and Alt, don’t have a visible
character, so when you press them, nothing is drawn.

Example 5-19: Draw Some Letters

This example introduces the textSize() function to set the size of the
letters, the textAlign() function to center the text on its x-coordinate, and
the text() function to draw the letter. These functions are discussed in
more detail on pages 84–85.

void setup() {

 size(120, 120);

 textSize(64);

 textAlign(CENTER);

}

void draw() {

 background(0);

 text(key, 60, 80);

}

By using an if structure, we can test to see whether a specific key is
pressed and choose to draw something on screen in response.

From library of Wow! eBook

72 Getting Started with Processing

Example 5-20: Check for Specific Keys

In this example, we test for an H or N to be typed. We use the comparison
operator, the == symbol, to see if the key value is equal to the characters
we’re looking for:

void setup() {

 size(120, 120);

 smooth();

}

void draw() {

 background(204);

 if (keyPressed) {

 if ((key == 'h') || (key == 'H')) {

 line(30, 60, 90, 60);

 }

 if ((key == 'n') || (key == 'N')) {

 line(30, 20, 90, 100);

 }

 }

 line(30, 20, 30, 100);

 line(90, 20, 90, 100);

}

When we watch for H or N to be pressed, we need to check for both the
lowercase and uppercase letters in the event that someone hits the Shift
key or has the Caps Lock set. We combine the two tests together with a
logical OR, the || symbol. If we translate the second if statement in this ex-
ample into plain language, it says, “If the ‘h’ key is pressed OR the ‘H’ key
is pressed.” Unlike Example 5-17 with the logical AND (the && symbol),
only one of these expressions need be true for the entire test to be true.

From library of Wow! eBook

Response 73

Some keys are more difficult to detect, because they aren’t tied to a par-
ticular letter. Keys like Shift, Alt, and the arrow keys are coded and require
an extra step to figure out if they are pressed. First, we need to check if
the key that’s been pressed is a coded key, then we check the code with
the keyCode variable to see which key it is. The most frequently used
keyCode values are ALT, CONTROL, and SHIFT, as well as the arrow keys,
UP, DOWN, LEFT, and RIGHT.

Example 5-21: Move with Arrow Keys

The following example shows how to check for the left or right arrow keys
to move a rectangle:

int x = 215;

void setup() {

 size(480, 120);

}

void draw() {

 if (keyPressed && (key == CODED)) { // If it’s a coded key

 if (keyCode == LEFT) { // If it’s the left arrow

 x--;

 } else if (keyCode == RIGHT) { // If it’s the right arrow

 x++;

 }

 }

 rect(x, 45, 50, 50);

}

From library of Wow! eBook

74 Getting Started with Processing

Robot 3: Response

This program uses the variables introduced in Robot 2 (see “Robot 2:
Variables” in Chapter 4) and makes it possible to change them while
the program runs so that the shapes respond to the mouse. The code
inside the draw() block runs many times each second. At each frame, the
variables defined in the program change in response to the mouseX and
mousePressed variables.

The mouseX value controls the position of the robot with an easing tech-
nique so that movements are less instantaneous and therefore feel more
natural. When a mouse button is pressed, the values of neckHeight and
bodyHeight change to make the robot short.

float x = 60; // X-coordinate

float y = 440; // Y-coordinate

int radius = 45; // Head Radius

int bodyHeight = 160; // Body Height

int neckHeight = 70; // Neck Height

float easing = 0.02;

void setup() {

 size(360, 480);

 smooth();

 strokeWeight(2);

From library of Wow! eBook

Response 75

 ellipseMode(RADIUS);

}

void draw() {

 int targetX = mouseX;

 x += (targetX - x) * easing;

 if (mousePressed) {

 neckHeight = 16;

 bodyHeight = 90;

 } else {

 neckHeight = 70;

 bodyHeight = 160;

 }

 float ny = y - bodyHeight - neckHeight - radius;

 background(204);

 // Neck

 stroke(102);

 line(x+12, y-bodyHeight, x+12, ny);

 // Antennae

 line(x+12, ny, x-18, ny-43);

 line(x+12, ny, x+42, ny-99);

 line(x+12, ny, x+78, ny+15);

 // Body

 noStroke();

 fill(102);

 ellipse(x, y-33, 33, 33);

 fill(0);

 rect(x-45, y-bodyHeight, 90, bodyHeight-33);

 // Head

 fill(0);

 ellipse(x+12, ny, radius, radius);

 fill(255);

 ellipse(x+24, ny-6, 14, 14);

 fill(0);

 ellipse(x+24, ny-6, 3, 3);

}

From library of Wow! eBook

From library of Wow! eBook

 77

6/Media

Processing is capable of drawing more than
simple lines and shapes. It’s time to learn
how to load raster images, vector files,
and fonts into our programs to extend the
visual possibilities to photography, detailed
diagrams, and diverse typefaces.

Processing uses a folder named data to store such files, so that you never
have to think about their location when making a sketch that will run on the
desktop, on the Web, or on a mobile device. We’ve posted some media files
online for you to use in this chapter’s examples: http://www.processing.org/
learning/books/media.zip.

Download this file, unzip it to the desktop (or somewhere else conve-
nient), and make a mental note of its location.

NOTE: To unzip on Mac OS X, just double-click the file, and it will create a
folder named media. On Windows, double-click the media.zip file, which
will open a new window. In that window, drag the media folder to the
desktop.

Create a new sketch, and select Add File from the Sketch menu. Find the
lunar.jpg file from the media folder that you just unzipped and select it. If ev-
erything went well, the message area will read “1 file added to the sketch.”

To check for the file, select Show Sketch Folder in the Sketch menu. You
should see a folder named data, with a copy of lunar.jpg inside. When
you add a file to the sketch, the data folder will automatically be created.
Instead of using the Add File menu command, you can do the same thing
by dragging files into the editor area of the Processing window. The files
will be copied to the data folder the same way (and the data folder will be
created if none exists).

From library of Wow! eBook

78 Getting Started with Processing

You can also create the data folder outside of Processing and copy files
there yourself. You won’t get the message saying that files have been
added, but this is a helpful method when you’re working with large num-
bers of files.

NOTE: On Windows and Mac OS X, extensions are hidden by default. It’s
a good idea to change that option so that you always see the full name
of your files. On Mac OS X, select Preferences from the Finder menu,
and then make sure “Show all filename extensions” is checked in the
Advanced tab. On Windows, look for “Folder Options,” and set the option
there.

Images
There are three steps to follow before you can draw an image to the
screen:

1.	 Add the image to the sketch’s data folder (instructions given previously).

2.	 Create a PImage variable to store the image.

3.	 Load the image into the variable with loadImage().

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Media 79

Example 6-1: Load an Image

After all three steps are done, you can draw the image to the screen with
the image() function. The first parameter to image() specifies the image
to draw; the second and third set the x- and y-coordinates:

PImage img;

void setup() {

 size(480, 120);

 img = loadImage("lunar.jpg");

}

void draw() {

 image(img, 0, 0);

}

Optional fourth and fifth parameters set the width and height to draw the
image. If the fourth and fifth parameters are not used, the image is drawn
at the size at which it was created.

These next examples show how to work with more than one image in the
same program and how to resize an image.

From library of Wow! eBook

80 Getting Started with Processing

Example 6-2: Load More Images

For this example, you’ll need to add the capsule.jpg file (found in the
media folder you downloaded) to your sketch using one of the methods
described earlier.

PImage img1;

PImage img2;

void setup() {

 size(480, 120);

 img1 = loadImage("lunar.jpg");

 img2 = loadImage("capsule.jpg");

}

void draw() {

 image(img1, -120, 0);

 image(img1, 130, 0, 240, 120);

 image(img2, 300, 0, 240, 120);

}

Example 6-3: Mousing Around with Images

When the mouseX and mouseY values are used as part of the fourth and
fifth parameters of image(), the image size changes as the mouse moves:

From library of Wow! eBook

Media 81

PImage img;

void setup() {

 size(480, 120);

 img = loadImage("lunar.jpg");

}

void draw() {

 background(0);

 image(img, 0, 0, mouseX * 2, mouseY * 2);

}

NOTE: When an image is displayed larger or smaller than its actual size,
it may become distorted. Be careful to prepare your images at the sizes
they will be used. When the display size of an image is changed with the
image() function, the actual image on the hard drive doesn’t change.

Processing can load and display raster images in the JPEG, PNG, and
GIF formats. (Vector shapes in the SVG format can be displayed in a
different way, as described in “Shapes,” later in this chapter.) You can
convert images to the JPEG, PNG, and GIF formats using programs like
GIMP and Photoshop. Most digital cameras save JPEG images, but they
usually need to be reduced in size before being used with Processing. A
typical digital camera creates an image that is several times larger than
the drawing area of most Processing sketches, so resizing such images
before they are added to the data folder makes sketches run more ef-
ficiently, and can save disk space.

GIF and PNG images support transparency, which means that pixels can
be invisible or partially visible (recall the discussion of color() and alpha
values on pages 26–29). GIF images have 1-bit transparency, which means
that pixels are either fully opaque or fully transparent. PNG images have
8-bit transparency, which means that each pixel can have a variable level
of opacity. The following examples show the difference, using the clouds.
gif and clouds.png files found in the media folder that you downloaded. Be
sure to add them to the sketch before trying each example.

From library of Wow! eBook

82 Getting Started with Processing

Example 6-4: Transparency with a GIF

PImage img;

void setup() {

 size(480, 120);

 img = loadImage("clouds.gif");

}

void draw() {

 background(255);

 image(img, 0, 0);

 image(img, 0, mouseY * -1);

}

Example 6-5: Transparency with a PNG

PImage img;

void setup() {

 size(480, 120);

 img = loadImage("clouds.png");

}

void draw() {

 background(204);

 image(img, 0, 0);

 image(img, 0, mouseY * -1);

}

From library of Wow! eBook

Media 83

NOTE: Remember to include the file extensions .gif, .jpg, or .png when you
load the image. Also, be sure that the image name is typed exactly as it
appears in the file, including the case of the letters. And if you missed it,
read the note earlier in this chapter about making sure that the file exten-
sions are visible on Mac OS X and Windows.

Fonts
Processing can display text in many fonts other than the default. Before
you display text in a different typeface, you need to convert one of the
fonts on your computer to the VLW format, which stores each letter as a
small image. To do this, select Create Font from the Tools menu to open
the dialog box (Figure 6-1). Specify the font you want to convert, as well as
the size and whether you want it to be smooth (anti-aliased).

Figure 6-1. Create Font tool.

From library of Wow! eBook

84 Getting Started with Processing

NOTE: Make the font size selection carefully by considering the following:
create the font at the size you want to use it in your sketch (or larger), but
keep in mind that larger sizes increase the font file size. Select the Char-
acters option only if you’ll be using non-Roman characters like Japanese
or Chinese text, because this also increases the file size significantly.

When you click the OK button in the Create Font tool, the VLW font is
created and placed in the sketch’s data folder. Now it’s possible to load
the font and add words to a sketch. This part is similar to working with im-
ages, but there’s one extra step:

1.	 Add the font to the sketch’s data folder (instructions given previously).

2.	 Create a PFont variable to store the font.

3.	 Load the font into the variable with loadFont().

4.	 Use the textFont() command to set the current font.

Example 6-6: Drawing with Fonts

Now you can draw these letters to the screen with the text() function, and
you can change the size with textSize(). For this example, you’ll need to
use the Create Font tool to create a VLW font (and modify the loadFont()
line to use it), or you can use AndaleMono-36.vlw from the media folder:

PFont font;

void setup() {

 size(480, 120);

 smooth();

 font = loadFont("AndaleMono-36.vlw");

 textFont(font);

}

void draw() {

 background(102);

From library of Wow! eBook

Media 85

 textSize(36);

 text("That’s one small step for man...", 25, 60);

 textSize(18);

 text("That’s one small step for man...", 27, 90);

}

The first parameter to text() is the character(s) to draw to the screen.
(Notice that the characters are enclosed within quotes.) The second and
third parameters set the horizontal and vertical location. The location is
relative to the baseline of the text (see Figure 6-2).

Figure 6-2. Typography coordinates.

Example 6-7: Draw Text in a Box

You can also set text to draw inside a box by adding fourth and fifth
parameters that specify the width and height of the box:

PFont font;

void setup() {

 size(480, 120);

 font = loadFont("AndaleMono-24.vlw");

 textFont(font);

}

void draw() {

 background(102);

 text("That’s one small step for man...", 26, 30, 240, 100);

}

From library of Wow! eBook

86 Getting Started with Processing

Example 6-8: Store Text in a String

In the previous example, the words inside the text() function start to make
the code difficult to read. We can store these words in a variable to make
the code more modular. The String data type is used to store text data.
Here’s a new version of the previous example that uses a String:

PFont font;

String quote = "That’s one small step for man...";

void setup() {

 size(480, 120);

 font = loadFont("AndaleMono-24.vlw");

 textFont(font);

}

void draw() {

 background(102);

 text(quote, 26, 30, 240, 100);

}

There’s a set of additional functions that affect how letters are displayed
on screen. They are explained, with examples, in the Typography category
of the Processing Reference.

Shapes
If you make vector shapes in a program like Inkscape or Illustrator, you
can load them into Processing directly. This is helpful for shapes you’d
rather not build with Processing’s drawing functions. As with images, you
need to add them to your sketch before they can be loaded.

From library of Wow! eBook

Media 87

There are three steps to load and draw an SVG file:

1.	 Add an SVG file to the sketch’s data folder.

2.	 Create a PShape variable to store the vector file.

3.	 Load the vector file into the variable with loadShape().

Example 6-9: Draw with Shapes

After following these steps, you can draw the image to the screen with the
shape() function:

PShape network;

void setup() {

 size(480, 120);

 smooth();

 network = loadShape("network.svg");

}

void draw() {

 background(0);

 shape(network, 30, 10);

 shape(network, 180, 10, 280, 280);

}

The parameters for shape() are similar to image(). The first parameter
tells shape() which SVG to draw and the next pair sets the position. Op-
tional fourth and fifth parameters set the width and height.

From library of Wow! eBook

88 Getting Started with Processing

Example 6-10: Scaling Shapes

Unlike raster images, vector shapes can be scaled to any size without
losing resolution. In this example, the shape is scaled based on the
mouseX variable, and the shapeMode() function is used to draw the shape
from its center, rather than the default position, the upper-left corner:

PShape network;

void setup() {

 size(240, 120);

 smooth();

 shapeMode(CENTER);

 network = loadShape("network.svg");

}

void draw() {

 background(0);

 float diameter = map(mouseX, 0, width, 10, 800);

 shape(network, 120, 60, diameter, diameter);

}

NOTE: There are limitations to the type of SVG file that you can load. Pro-
cessing doesn’t support all SVG features. See the Processing Reference
for PShape for more details.

From library of Wow! eBook

Media 89

Robot 4: Media

Unlike the robots created from lines and rectangles drawn in Processing
in the previous chapters, these robots were created with a vector draw-
ing program. For some shapes, it’s often easier to point and click in a
software tool like Inkscape or Illustrator than to define the shapes with
coordinates in code.

There’s a trade-off to selecting one image creation technique over
another. When shapes are defined in Processing, there’s more flexibility
to modify them while the program is running. If the shapes are defined
elsewhere and then loaded into Processing, changes are limited to the
position, angle, and size. When loading each robot from an SVG file, as
this example shows, the variations featured in Robot 2 (see “Robot 2:
Variables” in Chapter 4) are impossible.

Images can be loaded into a program to bring in visuals created in other
programs or captured with a camera. With this image in the background,
our robots are now exploring for life forms in Norway at the dawn of the
20th century.

The SVG and PNG file used in this example can be downloaded from
http://www.processing.org/learning/books/media.zip.

From library of Wow! eBook

90 Getting Started with Processing

PShape bot1;

PShape bot2;

PShape bot3;

PImage landscape;

float easing = 0.05;

float offset = 0;

void setup() {

 size(720, 480);

 bot1 = loadShape("robot1.svg");

 bot2 = loadShape("robot2.svg");

 bot3 = loadShape("robot3.svg");

 landscape = loadImage("alpine.png");

 smooth();

}

void draw() {

 // Set the background to the "landscape" image; this image

 // must be the same width and height as the program

 background(landscape);

 // Set the left/right offset and apply easing to make

 // the transition smooth

 float targetOffset = map(mouseY, 0, height, -40, 40);

 offset += (targetOffset - offset) * easing;

 // Draw the left robot

 shape(bot1, 85 + offset, 65);

 // Draw the right robot smaller and give it a smaller offset

 float smallerOffset = offset * 0.7;

 shape(bot2, 510 + smallerOffset, 140, 78, 248);

 // Draw the smallest robot, give it a smaller offset

 smallerOffset *= -0.5;

 shape(bot3, 410 + smallerOffset, 225, 39, 124);

}

From library of Wow! eBook

 91

7/Motion

Like a flip book, animation on screen is
created by drawing an image, then drawing
a slightly different image, then another, and
so on. The illusion of fluid motion is created
by persistence of vision. When a set of
similar images is presented at a fast enough
rate, our brains translate these images into
motion.

Example 7-1: See the Frame Rate

To create smooth motion, Processing tries to run the code inside draw()
at 60 frames each second. To confirm the frame rate, run this program
and watch the values print to the Console. The frameRate variable keeps
track of the program’s speed.

void draw() {

 println(frameRate);

}

Example 7-2: Set the Frame Rate

The frameRate() function changes the speed at which the program runs.
To see the result, uncomment different versions of frameRate() in this
example:

void setup() {

 frameRate(30); // Thirty frames each second

 //frameRate(12); // Twelve frames each second

 //frameRate(2); // Two frames each second

 //frameRate(0.5); // One frame every two seconds

}

From library of Wow! eBook

92 Getting Started with Processing

void draw() {

 println(frameRate);

}

NOTE: Processing tries to run the code at 60 frames each second, but if
it takes longer than 1/60th of a second to run the draw() method, then
the frame rate will decrease. The frameRate() function specifies only the
maximum frame rate, and the actual frame rate for any program depends
on the computer that is running the code.

Speed and Direction
To create fluid motion examples, we use a data type called float. This type
of variable stores numbers with decimal places, which provide more reso-
lution for working with motion. For instance, when using ints, the slowest
you can move each frame is one pixel at a time (1, 2, 3, 4, . . .), but with
floats, you can move as slowly as you want (1.01, 1.01, 1.02, 1.03, . . .).

Example 7-3: Move a Shape

The following example moves a shape from left to right by updating the x
variable:

int radius = 40;

float x = -radius;

float speed = 0.5;

void setup() {

 size(240, 120);

 smooth();

 ellipseMode(RADIUS);

}

From library of Wow! eBook

Motion 93

void draw() {

 background(0);

 x += speed; // Increase the value of x

 arc(x, 60, radius, radius, 0.52, 5.76);

}

When you run this code, you’ll notice the shape moves off the right of the
screen when the value of the x variable is greater than the width of the
window. The value of x continues to increase, but the shape is no longer
visible.

Example 7-4: Wrap Around

There are many alternatives to this behavior, which you can choose from
according to your preference. First, we’ll extend the code to show how to
move the shape back to the left edge of the screen after it disappears off
the right. In this case, picture the screen as a flattened cylinder, with the
shape moving around the outside to return to its starting point:

int radius = 40;

float x = -radius;

float speed = 0.5;

void setup() {

 size(240, 120);

 smooth();

 ellipseMode(RADIUS);

}

void draw() {

 background(0);

 x += speed; // Increase the value of x

 if (x > width+radius) { // If the shape is off screen,

 x = -radius; // move to the left edge

 }

 arc(x, 60, radius, radius, 0.52, 5.76);

}

From library of Wow! eBook

94 Getting Started with Processing

On each trip through draw(), the code tests to see if the value of x has
increased beyond the width of the screen (plus the radius of the shape). If
it has, we set the value of x to a negative value, so that as it continues to
increase, it will enter the screen from the left. See Figure 7-1 for a diagram
of how it works.

Figure 7-1. Testing for the left edge of the window.

Example 7-5: Bounce Off the Wall

In this example, we’ll extend Example 7-3 to have the shape change
directions when it hits an edge, instead of wrapping around to the left. To
make this happen, we add a new variable to store the direction of the
shape. A direction value of 1 moves the shape to the right, and a value of
–1 moves the shape to the left:

From library of Wow! eBook

Motion 95

int radius = 40;

float x = 110;

float speed = 0.5;

int direction = 1;

void setup() {

 size(240, 120);

 smooth();

 ellipseMode(RADIUS);

}

void draw() {

 background(0);

 x += speed * direction;

 if ((x > width-radius) || (x < radius)) {

 direction = -direction; // Flip direction

 }

 if (direction == 1) {

 arc(x, 60, radius, radius, 0.52, 5.76); // Face right

 } else {

 arc(x, 60, radius, radius, 3.67, 8.9); // Face left

 }

}

When the shape reaches an edge, this code flips the shape’s direction by
changing the sign of the direction variable. For example, if the direction
variable is positive when the shape reaches an edge, the code flips it to
negative.

Tweening
Sometimes you want to animate a shape to go from one point on screen to
another. With a few lines of code, you can set up the start position and the
stop position, then calculate the in-between (tween) positions at each frame.

From library of Wow! eBook

96 Getting Started with Processing

Example 7-6: Calculate Tween Positions

To make this example code modular, we’ve created a group of variables at
the top. Run the code a few times and change the values to see how this
code can move a shape from any location to any other at a range of
speeds. Change the step variable to alter the speed:

int startX = 20; // Initial x-coordinate

int stopX = 160; // Final x-coordinate

int startY = 30; // Initial y-coordinate

int stopY = 80; // Final y-coordinate

float x = startX; // Current x-coordinate

float y = startY; // Current y-coordinate

float step = 0.005; // Size of each step (0.0 to 1.0)

float pct = 0.0; // Percentage traveled (0.0 to 1.0)

void setup() {

 size(240, 120);

 smooth();

}

void draw() {

 background(0);

 if (pct < 1.0) {

 x = startX + ((stopX-startX) * pct);

 y = startY + ((stopY-startX) * pct);

 pct += step;

 }

 ellipse(x, y, 20, 20);

}

From library of Wow! eBook

Motion 97

Random
Unlike the smooth, linear motion common to computer graphics, mo-
tion in the physical world is usually idiosyncratic. For instance, think of a
leaf floating to the ground, or an ant crawling over rough terrain. We can
simulate the unpredictable qualities of the world by generating random
numbers. The random() function calculates these values; we can set a
range to tune the amount of disarray in a program.

Example 7-7: Generate Random Values

The following short example prints random values to the Console, with
the range limited by the position of the mouse. The random() function
always returns a floating-point value, so be sure the variable on the left
side of the assignment operator (=) is a float as it is here:

void draw() {

 float r = random(0, mouseX);

 println(r);

}

Example 7-8: Draw Randomly

The following example builds on Example 7-7; it uses the values from
random() to change the position of lines on screen. When the mouse is at
the left of the screen, the change is small; as it moves to the right, the
values from random() increase and the movement becomes more
exaggerated. Because the random() function is inside the for loop, a new
random value is calculated for each point of every line:

void setup() {

 size(240, 120);

 smooth();

}

From library of Wow! eBook

98 Getting Started with Processing

void draw() {

 background(204);

 for (int x = 20; x < width; x += 20) {

 float mx = mouseX / 10;

 float offsetA = random(-mx, mx);

 float offsetB = random(-mx, mx);

 line(x + offsetA, 20, x - offsetB, 100);

 }

}

Example 7-9: Move Shapes Randomly

When used to move shapes around on screen, random values can
generate images that are more natural in appearance. In the following
example, the position of the circle is modified by random values on each
trip through draw(). Because the background() function is not used, past
locations are traced:

float speed = 2.5;

int diameter = 20;

float x;

float y;

void setup() {

 size(240, 120);

 smooth();

 x = width/2;

 y = height/2;

}

void draw() {

 x += random(-speed, speed);

 y += random(-speed, speed);

 ellipse(x, y, diameter, diameter);

}

From library of Wow! eBook

Motion 99

If you watch this example long enough, you may see the circle leave the
window and come back. This is left to chance, but we could add a few if
structures or use the constrain() function to keep the circle from leav-
ing the screen. The constrain() function limits a value to a specific range,
which can be used to keep x and y within the boundaries of the display
window. By replacing the draw() in the preceding code with the following,
you’ll ensure that the ellipse will remain on the screen:

void draw() {

 x += random(-speed, speed);

 y += random(-speed, speed);

 x = constrain(x, 0, width);

 y = constrain(y, 0, height);

 ellipse(x, y, diameter, diameter);

}

NOTE: The randomSeed() function can be used to force random() to
produce the same sequence of numbers each time a program is run. This
is described further in the Processing Reference.

Timers
Every Processing program counts the amount of time that has passed
since it was started. It counts in milliseconds (thousandths of a second), so
after 1 second, the counter is at 1,000; after 5 seconds, it’s at 5,000; and
after 1 minute, it’s at 60,000. We can use this counter to trigger animations
at specific times. The millis() function returns this counter value.

Example 7-10: Time Passes

You can watch the time pass when you run this program:

void draw() {

 int timer = millis();

 println(timer);

}

From library of Wow! eBook

100 Getting Started with Processing

Example 7-11: Triggering Timed Events

When paired with an if block, the values from millis() can be used to
sequence animation and events within a program. For instance, after two
seconds have elapsed, the code inside the if block can trigger a change. In
this example, variables called time1 and time2 determine when to change
the value of the x variable:

int time1 = 2000;

int time2 = 4000;

float x = 0;

void setup() {

 size(480, 120);

 smooth();

}

void draw() {

 int currentTime = millis();

 background(204);

 if (currentTime > time2) {

 x -= 0.5;

 } else if (currentTime > time1) {

 x += 2;

 }

 ellipse(x, 60, 90, 90);

}

Circular
If you’re a trigonometry ace, you already know how amazing the sine and
cosine functions are. If you’re not, we hope the next examples will trigger
your interest. We won’t discuss the math in detail here, but we’ll show a
few applications to generate fluid motion.

Figure 7-2 shows a visualization of sine wave values and how they relate to
angles. At the top and bottom of the wave, notice how the rate of change
(the change on the vertical axis) slows down, stops, then switches direc-
tion. It’s this quality of the curve that generates interesting motion.

From library of Wow! eBook

Motion 101

The sin() and cos() functions in Processing return values between –1 and
1 for the sine or cosine of the specified angle. Like arc(), the angles must
be given in radian values (see Examples 3-7 and 3-8 for a reminder of how
radians work). To be useful for drawing, the float values returned by sin()
and cos() are usually multiplied by a larger value.

Figure 7-2. Sine and cosine values.

From library of Wow! eBook

102 Getting Started with Processing

Example 7-12: Sine Wave Values

This example shows how values for sin() cycle from –1 to 1 as the angle
increases. With the map() function, the sinval variable is converted from
this range to values from 0 and 255. This new value is used to set the
background color of the window:

float angle = 0.0;

void draw() {

 float sinval = sin(angle);

 println(sinval);

 float gray = map(sinval, -1, 1, 0, 255);

 background(gray);

 angle += 0.1;

}

Example 7-13: Sine Wave Movement

This example shows how these values can be converted into movement:

float angle = 0.0;

float offset = 60;

float scalar = 40;

float speed = 0.05;

void setup() {

 size(240, 120);

 smooth();

}

void draw() {

 background(0);

 float y1 = offset + sin(angle) * scalar;

 float y2 = offset + sin(angle + 0.4) * scalar;

 float y3 = offset + sin(angle + 0.8) * scalar;

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Motion 103

 ellipse(80, y1, 40, 40);

 ellipse(120, y2, 40, 40);

 ellipse(160, y3, 40, 40);

 angle += speed;

}

Example 7-14: Circular Motion

When sin() and cos() are used together, they can produce circular motion.
The cos() values provide the x-coordinates, and the sin() values the
y-coordinates. Both are multiplied by a variable named scalar to change
the radius of the movement and summed with an offset value to set the
center of the circular motion:

float angle = 0.0;

float offset = 60;

float scalar = 30;

float speed = 0.05;

void setup() {

 size(120, 120);

 smooth();

}

void draw() {

 float x = offset + cos(angle) * scalar;

 float y = offset + sin(angle) * scalar;

 ellipse(x, y, 40, 40);

 angle += speed;

}

From library of Wow! eBook

104 Getting Started with Processing

Example 7-15: Spirals

A slight change made to increase the scalar value at each frame produces
a spiral, rather than a circle:

float angle = 0.0;

float offset = 60;

float scalar = 2;

float speed = 0.05;

void setup() {

 size(120, 120);

 fill(0);

 smooth();

}

void draw() {

 float x = offset + cos(angle) * scalar;

 float y = offset + sin(angle) * scalar;

 ellipse(x, y, 2, 2);

 angle += speed;

 scalar += speed;

}

Translate, Rotate, Scale
Changing the screen coordinates is an alternative technique to create
motion. For instance, you can move a shape 50 pixels to the right, or you
can move the location of coordinate (0,0) 50 pixels to the right—the visual
result on screen is the same. By modifying the default coordinate system,
we can create different transformations including translation, rotation,
and scaling. Figure 7-3 demonstrates this graphically.

From library of Wow! eBook

Motion 105

Figure 7-3. Translating, rotating, and scaling the coordinates.

From library of Wow! eBook

106 Getting Started with Processing

Working with transformations can be tricky, but the translate() function is
the most straightforward, so we’ll start with it. This function can shift the
coordinate system left, right, up, and down with its two parameters.

Example 7-16: Translating Location

In this example, notice that each rectangle is drawn at coordinate (0,0),
but they are moved around on the screen, because they are affected by
translate():

void setup() {

 size(120, 120);

}

void draw() {

 translate(mouseX, mouseY);

 rect(0, 0, 30, 30);

}

The translate() function sets the (0,0) coordinate of the screen to the
mouse location. In the next line, the rect() drawn at the new (0,0) is in fact
drawn at the mouse location.

Example 7-17: Multiple Translations

After a transformation is made, it is applied to all subsequent drawing
functions. Notice what happens when a second translate command is
added to control a second rectangle:

From library of Wow! eBook

Motion 107

void setup() {

 size(120, 120);

}

void draw() {

 translate(mouseX, mouseY);

 rect(0, 0, 30, 30);

 translate(35, 10);

 rect(0, 0, 15, 15);

}

The smaller rectangle was translated the amount of mouseX + 35 and
mouseY + 10.

Example 7-18: Isolating Transformations

To isolate the effects of a transformation so they don’t affect later
commands, use the pushMatrix() and popMatrix() functions. When the
pushMatrix() function is run, it saves a copy of the current coordinate
system and then restores that system after popMatrix():

void setup() {

 size(120, 120);

}

void draw() {

 pushMatrix();

 translate(mouseX, mouseY);

 rect(0, 0, 30, 30);

 popMatrix();

 translate(35, 10);

 rect(0, 0, 15, 15);

}

From library of Wow! eBook

108 Getting Started with Processing

In this example, the smaller rectangle always draws in the upper-left corner
because the translate(mouseX, mouseY) is cancelled by the popMatrix().

NOTE: The pushMatrix() and popMatrix() functions are always used in
pairs. For every pushMatrix(), you need to have a matching popMatrix().

Example 7-19: Rotation

The rotate() function rotates the coordinate system. It has one parameter,
which is the angle (in radians) to rotate. It always rotates relative to (0,0),
known as rotating around the origin. To spin a shape around its center
point, first use translate() to move to the location where you’d like the
shape, then call rotate(), and then draw the shape with its center at
coordinate (0,0):

float angle = 0.0;

void setup() {

 size(120, 120);

 smooth();

}

void draw() {

 translate(mouseX, mouseY);

 rotate(angle);

 rect(-15, -15, 30, 30);

 angle += 0.1;

}

From library of Wow! eBook

Motion 109

Example 7-20: Combining Transformations

When translate() and rotate() are combined, the order in which they
appear affects the result. The following example is identical to Example
7-19, except that translate() and rotate() are reversed. The shape now
rotates around the upper-left corner of the display window, with the
distance from the corner set by translate():

float angle = 0.0;

void setup() {

 size(120, 120);

 smooth();

}

void draw() {

 rotate(angle);

 translate(mouseX, mouseY);

 rect(-15, -15, 30, 30);

 angle += 0.1;

}

NOTE: You can also use the rectMode(), ellipseMode(), imageMode(), and
shapeMode() functions to make it easier to draw shapes from their center.

From library of Wow! eBook

110 Getting Started with Processing

Example 7-21: Scaling

The scale() function stretches the coordinates on the screen. Like
rotate(), it transforms from the origin. Therefore, as with rotate(), to scale
a shape from its center, translate to its location, scale, and then draw with
the center at coordinate (0,0):

float angle = 0.0;

void setup() {

 size(120, 120);

 smooth();

}

void draw() {

 translate(mouseX, mouseY);

 scale(sin(angle) + 2);

 rect(-15, -15, 30, 30);

 angle += 0.1;

}

From library of Wow! eBook

Motion 111

Example 7-22: Keeping Strokes Consistent

From the thick lines in Example 7-21, you can see how the scale() func-
tion affects the stroke weight. To maintain a consistent stroke weight as a
shape scales, divide the desired stroke weight by the scalar value:

float angle = 0.0;

void setup() {

 size(120, 120);

 smooth();

}

void draw() {

 translate(mouseX, mouseY);

 float scalar = sin(angle) + 2;

 scale(scalar);

 strokeWeight(1.0 / scalar);

 rect(-15, -15, 30, 30);

 angle += 0.1;

}

Example 7-23: An Articulating Arm

In this final and longest transformation example, we’ve put together a
series of translate() and rotate() functions to create a linked arm that
bends back and forth. Each translate() further moves the position of the
lines, and each rotate() adds to the previous rotation to bend more:

From library of Wow! eBook

112 Getting Started with Processing

float angle = 0.0;

float angleDirection = 1;

float speed = 0.005;

void setup() {

 size(120, 120);

 smooth();

}

void draw() {

 background(204);

 translate(20, 25); // Move to start position

 rotate(angle);

 strokeWeight(12);

 line(0, 0, 40, 0);

 translate(40, 0); // Move to next joint

 rotate(angle * 2.0);

 strokeWeight(6);

 line(0, 0, 30, 0);

 translate(30, 0); // Move to next joint

 rotate(angle * 2.5);

 strokeWeight(3);

 line(0, 0, 20, 0);

 angle += speed * angleDirection;

 if ((angle > QUARTER_PI) || (angle < 0)) {

 angleDirection *= -1;

 }

}

Here, we don’t use a pushMatrix() or popMatrix(), because we want the
transformations to propagate—for each transformation to build on the
last. The coordinate system is automatically reset to the default when
draw() begins each frame.

From library of Wow! eBook

Motion 113

Robot 5: Motion

In this example, the techniques for random and circular motion are ap-
plied to the robot. The background() was removed to make it easier to see
how the robot’s position and body change.

At each frame, a random number between –4 and 4 is added to the
x-coordinate, and a random number between –1 and 1 is added to the y-
coordinate. This causes the robot to move more from left to right than top
to bottom. Numbers calculated from the sin() function change the height
of the neck so it oscillates between 50 and 110 pixels high:

float x = 180; // X-coordinate

float y = 400; // Y-coordinate

float bodyHeight = 153; // Body height

float neckHeight = 56; // Neck height

float radius = 45; // Head radius

float angle = 0.0; // Angle for motion

void setup() {

 size(360, 480);

 smooth();

 ellipseMode(RADIUS);

 background(204);

}

From library of Wow! eBook

114 Getting Started with Processing

void draw() {

 // Change position by a small random amount

 x += random(-4, 4);

 y += random(-1, 1);

 // Change height of neck

 neckHeight = 80 + sin(angle) * 30;

 angle += 0.05;

 // Adjust the height of the head

 float ny = y - bodyHeight - neckHeight - radius;

 // Neck

 stroke(102);

 line(x+2, y-bodyHeight, x+2, ny);

 line(x+12, y-bodyHeight, x+12, ny);

 line(x+22, y-bodyHeight, x+22, ny);

 // Antennae

 line(x+12, ny, x-18, ny-43);

 line(x+12, ny, x+42, ny-99);

 line(x+12, ny, x+78, ny+15);

 // Body

 noStroke();

 fill(102);

 ellipse(x, y-33, 33, 33);

 fill(0);

 rect(x-45, y-bodyHeight, 90, bodyHeight-33);

 fill(102);

 rect(x-45, y-bodyHeight+17, 90, 6);

 // Head

 fill(0);

 ellipse(x+12, ny, radius, radius);

 fill(255);

 ellipse(x+24, ny-6, 14, 14);

 fill(0);

 ellipse(x+24, ny-6, 3, 3);

}

From library of Wow! eBook

 115

8/Functions

Functions are the basic building blocks for
Processing programs. They have appeared
in every example we’ve presented. For
instance, we’ve frequently used the size()
function, the line() function, and the fill()
function. This chapter shows how to write
new functions to extend the capabilities of
Processing beyond its built-in features.

The power of functions is modularity. Functions are independent software
units that are used to build more complex programs—like LEGO® bricks,
where each type of brick serves a specific purpose, and making a com-
plex model requires using the different parts together. As with functions,
the true power of these bricks is the ability to build many different forms
from the same set of elements. The same group of LEGOs that makes a
spaceship can be reused to construct a truck, a skyscraper, and many
other objects.

Functions are helpful if you want to draw a more complex shape like a tree
over and over. The function to draw the tree shape would be made up of
Processing’s built-in commands, like line(), that create the form. After
the code to draw the tree is written, you don’t need to think about the
details of tree drawing again—you can simply write tree() (or whatever
you named the function) to draw the shape. Functions allow a complex
sequence of statements to be abstracted, so you can focus on the higher-
level goal (such as drawing a tree), and not the details of the implementa-
tion (the line() commands that define the tree shape). Once a function is
defined, the code inside the function need not be repeated again.

From library of Wow! eBook

116 Getting Started with Processing

Function Basics
A computer runs a program one line at a time. When a function is run, the
computer jumps to where the function is defined and runs the code there,
then jumps back to where it left off.

Example 8-1: Roll the Dice

This behavior is illustrated with the rollDice() function written for this ex-
ample. When a program starts, it runs the code in setup() and then stops.
The program takes a detour and runs the code inside rollDice() each time
it appears:

void setup() {

 println("Ready to roll!");

 rollDice(20);

 rollDice(20);

 rollDice(6);

 println("Finished.");

}

void rollDice(int numSides) {

 int d = 1 + int(random(numSides));

 println("Rolling... " + d);

}

The two lines of code in rollDice() select a random number between 1 and
the number of sides on the dice, and prints that number to the Console.
Because the numbers are random, you’ll see different numbers each time
the program is run:

Ready to roll!

Rolling... 20

Rolling... 11

Rolling... 1

Finished.

Each time the rollDice() function is run inside setup(), the code within the
function runs from top to bottom, then the program continues on the next
line within setup().

From library of Wow! eBook

Functions 117

The random() function (described on page 97) returns a number from 0 up
to (but not including) the number specified. So random(6) returns a num-
ber between 0 and 5.99999. . . . Because random() returns a float value,
we also use int() to convert it to an integer. So int(random(6)) will return 0,
1, 2, 3, 4, or 5. Then we add 1 so that the number returned is between 1 and
6 (like a die). Like many other cases in this book, counting from 0 makes it
easier to use the results of random() with other calculations.

Example 8-2: Another Way to Roll

If an equivalent program were written without the rollDice() function, it
might look like this:

void setup() {

 println("Ready to roll!");

 int d1 = 1 + int(random(20));

 println("Rolling... " + d1);

 int d2 = 1 + int(random(20));

 println("Rolling... " + d2);

 int d3 = 1 + int(random(6));

 println("Rolling... " + d3);

 println("Finished.");

}

The rollDice() function in Example 8-1 makes the code easier to read
and maintain. The program is clearer, because the name of the function
clearly states its purpose. In this example, we see the random() function
in setup(), but its use is not as obvious. The number of sides on the die is
also clearer with a function: when the code says rollDice(6), it’s obvious
that it’s simulating the roll of a six-sided die. Also, Example 8-1 is easier to
maintain, because information is not repeated. The phase Rolling... is
repeated three times here. If you want to change that text to something
else, you would need to update the program in three places, rather than
making a single edit inside the rollDice() function. In addition, as you’ll see
in Example 8-5, a function can also make a program much shorter (and
therefore easier to maintain and read), which helps reduce the potential
number of bugs.

From library of Wow! eBook

118 Getting Started with Processing

Make a Function
In this section, we’ll draw an owl to explain the steps involved in making a
function.

Example 8-3: Draw the Owl

First we’ll draw the owl without using a function:

void setup() {

 size(480, 120);

 smooth();

}

void draw() {

 background(204);

 translate(110, 110);

 stroke(0);

 strokeWeight(70);

 line(0, -35, 0, -65); // Body

 noStroke();

 fill(255);

 ellipse(-17.5, -65, 35, 35); // Left eye dome

 ellipse(17.5, -65, 35, 35); // Right eye dome

 arc(0, -65, 70, 70, 0, PI); // Chin

 fill(0);

 ellipse(-14, -65, 8, 8); // Left eye

 ellipse(14, -65, 8, 8); // Right eye

 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak

}

Notice that translate() is used to move the origin (0,0) to 110 pixels over
and 110 pixels down. Then the owl is drawn relative to (0,0), with its coor-
dinates sometimes positive and negative as it’s centered around the new
0,0 point. See Figure 8-1.

From library of Wow! eBook

Functions 119

Figure 8-1. The owl’s coordinates.

Example 8-4: Two’s Company

The code presented in Example 8-3 is reasonable if there is only one owl,
but when we draw a second, the length of the code is nearly doubled:

void setup() {

 size(480, 120);

 smooth();

}

void draw() {

 background(204);

 // Left owl

 translate(110, 110);

 stroke(0);

 strokeWeight(70);

 line(0, -35, 0, -65); // Body

From library of Wow! eBook

120 Getting Started with Processing

 noStroke();

 fill(255);

 ellipse(-17.5, -65, 35, 35); // Left eye dome

 ellipse(17.5, -65, 35, 35); // Right eye dome

 arc(0, -65, 70, 70, 0, PI); // Chin

 fill(0);

 ellipse(-14, -65, 8, 8); // Left eye

 ellipse(14, -65, 8, 8); // Right eye

 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak

 // Right owl

 translate(70, 0);

 stroke(0);

 strokeWeight(70);

 line(0, -35, 0, -65); // Body

 noStroke();

 fill(255);

 ellipse(-17.5, -65, 35, 35); // Left eye dome

 ellipse(17.5, -65, 35, 35); // Right eye dome

 arc(0, -65, 70, 70, 0, PI); // Chin

 fill(0);

 ellipse(-14, -65, 8, 8); // Left eye

 ellipse(14, -65, 8, 8); // Right eye

 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak

}

The program grew from 21 lines to 34, because the code to draw the first
owl was cut and pasted into the program and a translate() was inserted to
move it to the right 70 pixels. This is a tedious and inefficient way to draw
a second owl, not to mention the headache of adding a third owl with this
method. But duplicating the code is unnecessary, because this is the type
of situation where a function can come to the rescue.

Example 8-5: An Owl Function

In this example, a function is introduced to draw two owls with the same
code. If we make the code that draws the owl to the screen into a new
function, the code need only appear once in the program:

From library of Wow! eBook

Functions 121

:

void setup() {

 size(480, 120);

 smooth();

}

void draw() {

 background(204);

 owl(110, 110);

 owl(180, 110);

}

void owl(int x, int y) {

 pushMatrix();

 translate(x, y);

 stroke(0);

 strokeWeight(70);

 line(0, -35, 0, -65); // Body

 noStroke();

 fill(255);

 ellipse(-17.5, -65, 35, 35); // Left eye dome

 ellipse(17.5, -65, 35, 35); // Right eye dome

 arc(0, -65, 70, 70, 0, PI); // Chin

 fill(0);

 ellipse(-14, -65, 8, 8); // Left eye

 ellipse(14, -65, 8, 8); // Right eye

 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak

 popMatrix();

}

You can see from the illustrations that this example and Example 8-4 have
the same result, but this example is shorter, because the code to draw the
owl appears only once, inside the aptly named owl() function. This code
runs twice, because it’s called twice inside draw(). The owl is drawn in two
different locations because of the parameters passed into the function
that set the x- and y-coordinates.

From library of Wow! eBook

122 Getting Started with Processing

Parameters are an important part of functions, because they provide
flexibility. We saw another example in the rollDice() function; the single
parameter named numSides made it possible to simulate a 6-sided die,
a 20-sided die, or a die with any number of sides. This is just like many
other Processing functions. For instance, the parameters to the line()
function make it possible to draw a line from any pixel on screen to any
other pixel. Without the parameters, the function would be able to draw a
line only from one fixed point to another.

Each parameter has a data type (such as int or float), because each
parameter is a variable that’s created each time the function runs. When
this example is run, the first time the owl function is called, the value of
the x parameter is 110, and y is also 110. In the second use of the function,
the value of x is 180 and y is again 110. Each value is passed into the func-
tion and then wherever the variable name appears within the function, it’s
replaced with the incoming value.

Make sure the values passed into a function match the data types of the
parameters. For instance, if the following appeared inside the setup() for
Example 8-5:

owl(110.5, 120.2);

This would create an error, because the data type for the x and y parameters
is int, and the values 110.5 and 120.2 are float values.

Example 8-6: Increasing the Surplus Population

Now that we have a basic function to draw the owl at any location, we can
draw many owls efficiently by placing the function within a for loop and
changing the first parameter each time through the loop:

From library of Wow! eBook

Functions 123

void setup() {

 size(480, 120);

 smooth();

}

void draw() {

 background(204);

 for (int x = 35; x < width + 70; x += 70) {

 owl(x, 110);

 }

}

// Insert owl() function from Example 8-5

It’s possible to keep adding more and more parameters to the function to
change different aspects of how the owl is drawn. Values could be passed
in to change the owl’s color, rotation, scale, or the diameter of its eyes.

Example 8-7: Owls of Different Sizes

In this example, we’ve added two parameters to change the gray value
and size of each owl:

void setup() {

 size(480, 120);

 smooth();

}

void draw() {

 background(204);

 randomSeed(0);

 for (int i = 35; i < width + 40; i += 40) {

 int gray = int(random(0, 102));

 float scalar = random(0.25, 1.0);

 owl(i, 110, gray, scalar);

 }

}

From library of Wow! eBook

124 Getting Started with Processing

void owl(int x, int y, int g, float s) {

 pushMatrix();

 translate(x, y);

 scale(s); // Set the size

 stroke(g); // Set the gray value

 strokeWeight(70);

 line(0, -35, 0, -65); // Body

 noStroke();

 fill(255-g);

 ellipse(-17.5, -65, 35, 35); // Left eye dome

 ellipse(17.5, -65, 35, 35); // Right eye dome

 arc(0, -65, 70, 70, 0, PI); // Chin

 fill(g);

 ellipse(-14, -65, 8, 8); // Left eye

 ellipse(14, -65, 8, 8); // Right eye

 quad(0, -58, 4, -51, 0, -44, -4, -51); // Beak

 popMatrix();

}

Return Values
Functions can make a calculation and then return a value to the main
program. We’ve already used functions of this type, including random()
and sin(). Notice that when this type of function appears, the return value
is usually assigned to a variable:

float r = random(1, 10);

In this case, random() returns a value between 1 and 10, which is then as-
signed to the r variable.

A function that returns a value is also frequently used as a parameter to
another function. For instance:

point(random(width), random(height));

From library of Wow! eBook

Functions 125

In this case, the values from random() aren’t assigned to a variable—they
are passed as parameters to point() and used to position the point within
the window.

Example 8-8: Return a Value

To make a function that returns a value, replace the keyword void with the
data type that you want the function to return. In your function, specify
the data to be passed back with the keyword return. For instance, this
example includes a function called calculateMars() that calculates the
weight of a person or object on our neighboring planet:

void setup() {

 float yourWeight = 132;

 float marsWeight = calculateMars(yourWeight);

 println(marsWeight);

}

float calculateMars(float w) {

 float newWeight = w * 0.38;

 return newWeight;

}

Notice the data type float before the function name to show that it returns
a floating-point value, and the last line of the block, which returns the vari-
able newWeight. In the second line of setup(), that value is assigned to the
variable marsWeight. (To see your own weight on Mars, change the value
of the yourWeight variable to your weight.)

From library of Wow! eBook

126 Getting Started with Processing

Robot 6: Functions

In contrast to Robot 2 (see “Robot 2: Variables” in Chapter 4), this
example uses a function to draw four robot variations within the same
program. Because the drawRobot() function appears four times within
draw(), the code within the drawRobot() block is run four times, each time
with a different set of parameters to change the position and height of the
robot’s body.

Notice how what were global variables in Robot 2 have now been isolated
within the drawRobot() function. Because these variables apply only to
drawing the robot, they belong inside the curly braces that define the
drawRobot() function block. Because the value of the radius variable
doesn’t change, it need not be a parameter. Instead, it is defined at the
beginning of drawRobot():

void setup() {

 size(720, 480);

 smooth();

 strokeWeight(2);

 ellipseMode(RADIUS);

}

void draw() {

 background(204);

From library of Wow! eBook

Functions 127

 drawRobot(120, 420, 110, 140);

 drawRobot(270, 460, 260, 95);

 drawRobot(420, 310, 80, 10);

 drawRobot(570, 390, 180, 40);

}

void drawRobot(int x, int y, int bodyHeight, int neckHeight) {

 int radius = 45;

 int ny = y - bodyHeight - neckHeight - radius;

 // Neck

 stroke(102);

 line(x+2, y-bodyHeight, x+2, ny);

 line(x+12, y-bodyHeight, x+12, ny);

 line(x+22, y-bodyHeight, x+22, ny);

 // Antennae

 line(x+12, ny, x-18, ny-43);

 line(x+12, ny, x+42, ny-99);

 line(x+12, ny, x+78, ny+15);

 // Body

 noStroke();

 fill(102);

 ellipse(x, y-33, 33, 33);

 fill(0);

 rect(x-45, y-bodyHeight, 90, bodyHeight-33);

 fill(102);

 rect(x-45, y-bodyHeight+17, 90, 6);

 // Head

 fill(0);

 ellipse(x+12, ny, radius, radius);

 fill(255);

 ellipse(x+24, ny-6, 14, 14);

 fill(0);

 ellipse(x+24, ny-6, 3, 3);

 fill(153);

 ellipse(x, ny-8, 5, 5);

 ellipse(x+30, ny-26, 4, 4);

 ellipse(x+41, ny+6, 3, 3);

}

From library of Wow! eBook

From library of Wow! eBook

 129

9/Objects

Object-oriented programming (OOP) is a
different way to think about your programs.
Although the term “object-oriented
programming” may sound intimidating, there’s
good news: you’ve been working with objects
since Chapter 6, when you started using
PImage, PFont, String, and PShape. Unlike the
primitive data types boolean, int, and float,
which can store only one value, an object can
store many. But that’s only a part of the story.
Objects are also a way to group variables with
related functions. Because you already know
how to work with variables and functions,
objects simply combine what you’ve already
learned into a more understandable package.

Objects are important, because they break up ideas into smaller build-
ing blocks. This mirrors the natural world where, for instance, organs are
made of tissue, tissue is made of cells, and so on. Similarly, as your code
becomes more complicated, you must think in terms of smaller struc-
tures that form more complicated ones. It’s easier to write and maintain
smaller, understandable pieces of code that work together than it is to
write one large piece of code that does everything at once.

A software object is a collection of related variables and functions. In
the context of objects, a variable is called a field (or instance variable)
and a function is called a method. Fields and methods work just like the
variables and functions covered in earlier chapters, but we’ll use the new

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

130 Getting Started with Processing

terms to emphasize that they are a part of an object. To say it another
way, an object combines related data (fields) with related actions and be-
haviors (methods). The idea is to group together related data with related
methods that act on that data.

For instance, to model a radio, think about what parameters can be ad-
justed and the actions that can affect those parameters:

Fields: volume, frequency, band (FM, AM), power (on, off)
Methods: setVolume, setFrequency, setBand

Modeling a simple mechanical device is easy compared to modeling an
organism like an ant or a person. It’s not possible to reduce such complex
organisms to a few fields and methods, but it is possible to model enough
to create an interesting simulation. The Sims video game is a clear ex-
ample. This game is played by managing the daily activities of simulated
people. The characters have enough personality to make a playable,
addictive game, but no more. In fact, they have only five personality at-
tributes: neat, outgoing, active, playful, and nice. With the knowledge that
it’s possible to make a highly simplified model of complex organisms, we
could start programming an ant with only a few fields and methods:

Fields: type (worker, soldier), weight, length
Methods: walk, pinch, releasePheromones, eat

If you made a list of an ant’s fields and methods, you might choose to focus on
different aspects of the ant to model. There’s no right way to make a model, as
long as you make it appropriate for the purpose of your program’s goals.

Classes and Objects
Before you can create an object, you must define a class. A class is the
specification for an object. Using an architectural analogy, a class is like
a blueprint for a house, and the object is like the house itself. Each house
made from the blueprint can have variations, and the blueprint is only the
specification, not a built structure. For example, one house can be blue
and the other red; one house might come with a fireplace and the other
without. Likewise with objects, the class defines the data types and be-
haviors, but each object (house) made from a single class (blueprint) has
variables (color, fireplace) that are set to different values. To use a more
technical term, each object is an instance of a class and each instance has
its own set of fields and methods.

From library of Wow! eBook

Objects 131

Define a Class

Before you write a class, we recommend a little planning. Think about
what fields and methods your class should have. Do a little brainstorming
to imagine all the possible options and then prioritize and make your best
guess about what will work. You’ll make changes during the programming
process, but it’s important to have a good start.

For your fields, select clear names and decide the data type for each. The
fields inside a class can be any type of data. A class can simultaneously
hold many booleans, floats, images, strings, and so on. Keep in mind that
one reason to make a class is to group together related data elements. For
your methods, select clear names and decide the return values (if any).
The methods are used to change the values of the fields and to perform
actions based on the fields’ values.

For our first class, we’ll convert Example 7-9 from earlier in the book. We
start by making a list of the fields from the example:

float x

float y

int diameter

float speed

The next step is to figure out what methods might be useful for the class.
In looking at the draw() function from the example we’re adapting, we see
two primary components. The position of the shape is updated and drawn
to the screen. Let’s create two methods for our class, one for each task:

void move()

void display()

Neither of these methods return a value, so they both have the return
type void. When we next write the class based on the lists of fields and
methods, we’ll follow four steps:

1.	 Create the block.

2.	 Add the fields.

3.	 Write a constructor (explained shortly) to assign values to the fields.

4.	 Add the methods.

From library of Wow! eBook

132 Getting Started with Processing

First, we create a block:

class JitterBug {

}

Notice that the keyword class is lowercase and the name JitterBug is
uppercase. Naming the class with an uppercase letter isn’t required, but
it is a convention (that we strongly encourage) used to denote that it’s a
class. (The keyword class, however, must be lowercase because it’s a rule
of the programming language.)

Second, we add the fields. When we do this, we have to decide which
fields will have their values assigned through a constructor, a special
method used for that purpose. As a rule of thumb, field values that you
want to be different for each class are passed in through the constructor,
and the other field values can be defined when they are declared. For the
JitterBug class, we’ve decided that the values for x, y, and diameter will be
passed in. So the fields are declared as follows:

class JitterBug {

 float x;

 float y;

 int diameter;

 float speed = 0.5;

}

Third, we add the constructor. The constructor always has the same name
as the class. The purpose of the constructor is to assign the initial values to
the fields when an object (an instance of the class) is created (Figure 9-1). The
code inside the constructor block is run once when the object is first created.
As discussed earlier, we’re passing in three parameters to the constructor
when the object is initialized. Each of the values passed in is assigned to a
temporary variable that exists only while the code inside the constructor is
run. To clarify this, we’ve added the name temp to each of these variables,
but they can be named with any terms that you prefer. They are used only to
assign the values to the fields that are a part of the class. Also note that the
constructor never returns a value and therefore doesn’t have void or another
data type before it. After adding the constructor, the class looks like this:

class JitterBug {

 float x;

 float y;

From library of Wow! eBook

Objects 133

 int diameter;

 float speed = 0.5;

 JitterBug(float tempX, float tempY, int tempDiameter) {

 x = tempX;

 y = tempY;

 diameter = tempDiameter;

 }

}

The last step is to add the methods. This part is straightforward; it’s just
like writing functions, but here they are contained within the class. Also,
note the code spacing. Every line within the class is indented a few spaces
to show that it’s inside the block. Within the constructor and the methods,
the code is spaced again to clearly show the hierarchy:

class JitterBug {

 float x;

 float y;

 int diameter;

 float speed = 2.5;

 JitterBug(float tempX, float tempY, int tempDiameter) {

 x = tempX;

 y = tempY;

 diameter = tempDiameter;

 }

 void move() {

 x += random(-speed, speed);

 y += random(-speed, speed);

 }

 void display() {

 ellipse(x, y, diameter, diameter);

 }

}

From library of Wow! eBook

134 Getting Started with Processing

Figure 9-1. Passing values into the constructor.

Example 9-1: Make an Object

Now that you have defined a class, to use it in a program you must define
an object from that class. There are two steps to create an object:

1.	 Declare the object variable.

2.	 Create (initialize) the object with the keyword new.

From library of Wow! eBook

Objects 135

We’ll start by showing how this works within a Processing sketch and then
continue by explaining each part in depth:

JitterBug bug; // Declare object

void setup() {

 size(480, 120);

 smooth();

 // Create object and pass in parameters

 bug = new JitterBug(width/2, height/2, 20);

}

void draw() {

 bug.move();

 bug.display();

}

// Put a copy of the JitterBug class here

Each class is a data type and each object is a variable. We declare object
variables in a similar way to variables from primitive data types like bool-
ean, int, and float. The object is declared by stating the data type followed
by a name for the variable:

JitterBug bug;

The second step is to initialize the object with the keyword new. It makes
space for the object in memory and creates the fields. The name of the
constructor is written to the right of the new keyword, followed by the
parameters into the constructor, if any:

JitterBug bug = new JitterBug(200.0, 250.0, 30);

The three numbers within the parentheses are the parameters that are
passed into the JitterBug class constructor. The number of these para
meters and their data types must match those of the constructor.

From library of Wow! eBook

136 Getting Started with Processing

Example 9-2: Making Multiple Objects

In Example 9-1, we see something else new: the period (dot) that’s used to
access the object’s methods inside of draw(). The dot operator is used to
join the name of the object with its fields and methods. This becomes
clearer in this example, where two objects are made from the same class.
The jit.move() command refers to the move() method that belongs to the
object named jit, and bug.move() refers to the move() method that
belongs to the object named bug:

JitterBug jit;

JitterBug bug;

void setup() {

 size(480, 120);

 smooth();

 jit = new JitterBug(width * 0.33, height/2, 50);

 bug = new JitterBug(width * 0.66, height/2, 10);

}

void draw() {

 jit.move();

 jit.display();

 bug.move();

 bug.display();

}

// Put a copy of the JitterBug class here

Now that the class exists as its own module of code, any changes will
modify the objects made from it. For instance, you could add a field to the
JitterBug class that controls the color, or another that determines its size.
These values can be passed in using the constructor or assigned using
additional methods, such as setColor() or setSize(). And because it’s a self-
contained unit, you can also use the JitterBug class in another sketch.

From library of Wow! eBook

Objects 137

Now is a good time to learn about the tab feature of the Processing En-
vironment (Figure 9-2). Tabs allow you to spread your code across more
than one file. This makes longer code easier to edit and more manageable
in general. A new tab is usually created for each class, which reinforces
the modularity of working with classes and makes the code easy to find.

To create a new tab, click on the arrow at the righthand side of the tab bar.
When you select New Tab from the menu, you will be prompted to name
the tab within the message window. Using this technique, modify this
example’s code to try to make a new tab for the JitterBug class.

NOTE: Each tab shows up as a separate .pde file within the sketch’s folder.

Figure 9-2. Code can be split into different tabs to make it easier to
manage.

From library of Wow! eBook

138 Getting Started with Processing

Robot 7: Objects

A software object combines methods (functions) and fields (variables)
into one unit. The Robot class in this example defines all of the robot
objects that will be created from it. Each Robot object has its own set of
fields to store a position and the illustration that will draw to the screen.
Each has methods to update the position and display the illustration.

The parameters for bot1 and bot2 in setup() define the x- and y-coordinates
and the .svg file that will be used to depict the robot. The tempX and tempY
parameters are passed into the constructor and assigned to the xpos and
ypos fields. The svgName parameter is used to load the related illustration.
The objects (bot1 and bot2) draw at their own location and with a different
illustration because they each have unique values passed into the objects
through their constructors:

Robot bot1;

Robot bot2;

void setup() {

 size(720, 480);

 bot1 = new Robot("robot1.svg", 90, 80);

 bot2 = new Robot("robot2.svg", 440, 30);

 smooth();

}

From library of Wow! eBook

Objects 139

void draw() {

 background(204);

 // Update and display first robot

 bot1.update();

 bot1.display();

 // Update and display second robot

 bot2.update();

 bot2.display();

}

class Robot {

 float xpos;

 float ypos;

 float angle;

 PShape botShape;

 float yoffset = 0.0;

 // Set initial values in constructor

 Robot(String svgName, float tempX, float tempY) {

 botShape = loadShape(svgName);

 xpos = tempX;

 ypos = tempY;

 angle = random(0, TWO_PI);

 }

 // Update the fields

 void update() {

 angle += 0.05;

 yoffset = sin(angle) * 20;

 }

 // Draw the robot to the screen

 void display() {

 shape(botShape, xpos, ypos + yoffset);

 }

}

From library of Wow! eBook

From library of Wow! eBook

 141

10/Arrays

We’ve introduced new programming ideas in
each chapter (variables, functions, objects)
and now we’ve come to the last step—arrays!
An array is a list of variables that share a
common name. Arrays are useful because
they make it possible to work with more
variables without creating a new name for
each. This makes the code shorter, easier to
read, and more convenient to update.

Example 10-1: Many Variables

To see what we mean, refer to Example 7-3. This code works fine if we’re
moving around only one shape, but what if we want to have two? We need
to make a new x variable and update it within draw():

float x1 = -20;

float x2 = 20;

void setup() {

 size(240, 120);

 smooth();

 noStroke();

}

From library of Wow! eBook

142 Getting Started with Processing

void draw() {

 background(0);

 x1 += 0.5;

 x2 += 0.5;

 arc(x1, 30, 40, 40, 0.52, 5.76);

 arc(x2, 90, 40, 40, 0.52, 5.76);

}

Example 10-2: Too Many Variables

The code for the previous example is still manageable, but what if we want
to have five circles? We need to add three more variables to the two we
already have:

float x1 = -10;

float x2 = 10;

float x3 = 35;

float x4 = 18;

float x5 = 30;

void setup() {

 size(240, 120);

 smooth();

 noStroke();

}

void draw() {

 background(0);

 x1 += 0.5;

 x2 += 0.5;

 x3 += 0.5;

 x4 += 0.5;

 x5 += 0.5;

 arc(x1, 20, 20, 20, 0.52, 5.76);

 arc(x2, 40, 20, 20, 0.52, 5.76);

 arc(x3, 60, 20, 20, 0.52, 5.76);

From library of Wow! eBook

Arrays 143

 arc(x4, 80, 20, 20, 0.52, 5.76);

 arc(x5, 100, 20, 20, 0.52, 5.76);

}

This code is starting to get out of control.

Example 10-3: Arrays, Not Variables

Imagine what would happen if you wanted to have 3,000 circles. This
would mean creating 3,000 individual variables, then updating each one
separately. Could you keep track of that many variables? Would you want
to? Instead, we use an array:

float[] x = new float[3000];

void setup() {

 size(240, 120);

 smooth();

 noStroke();

 fill(255, 200);

 for (int i = 0; i < x.length; i++) {

 x[i] = random(-1000, 200);

 }

}

void draw() {

 background(0);

 for (int i = 0; i < x.length; i++) {

 x[i] += 0.5;

 float y = i * 0.4;

 arc(x[i], y, 12, 12, 0.52, 5.76);

 }

}

We’ll spend the rest of this chapter talking about the details that make
this example possible.

From library of Wow! eBook

144 Getting Started with Processing

Make an Array
Each item in an array is called an element, and each has an index value to
mark its position within the array. Just like coordinates on the screen,
index values for an array start counting from 0. For instance, the first
element in the array has the index value 0, the second element in the
array has the index value 1, and so on. If there are 20 values in the array,
the index value of the last element is 19. Figure 10-1 shows the conceptual
structure of an array.

Figure 10-1. An array is a list of one or more variables that share the same
name.

Using arrays is similar to working with single variables; it follows the same
patterns. As you know, you can make a single integer variable called x
with this code:

int x;

To make an array, just place brackets after the data type:

int[] x;

The beauty of creating an array is the ability to make 2, 10, or 100,000
variable values with only one line of code. For instance, the following line
creates an array of 2,000 integer variables:

int[] x = new int[2000];

From library of Wow! eBook

Arrays 145

You can make arrays from all Processing data types: boolean, float, String,
PShape, and so on, as well as any user-defined classes. For example, the
following code creates an array of 32 PImage variables:

PImage[] images = new PImage[32];

To make an array, start with the name of the data type, followed by the
brackets. The name you select for the array is next, followed by the as-
signment operator (the equal symbol), followed by the new keyword, fol-
lowed by the name of the data type again, with the number of elements to
create within the brackets. This pattern works for arrays of all data types.

NOTE: Each array can store only one type of data (boolean, int, float,
PImage, etc.). You can’t mix and match different types of data within a
single array. If you need to do this, work with objects instead.

Before we get ahead of ourselves, let’s slow down and talk about working
with arrays in more detail. Like making an object, there are three steps to
working with an array:

1.	 Declare the array and define the data type.

2.	 Create the array with the keyword new and define the length.

3.	 Assign values to each element.

Each step can happen on its own line, or all the steps can be compressed
together. Each of the three following examples shows a different tech-
nique to create an array called x that stores two integers, 12 and 2. Pay
close attention to what happens before setup() and what happens within
setup().

From library of Wow! eBook

146 Getting Started with Processing

Example 10-4: Declare and Assign an Array

First we’ll declare the array outside of setup() and then create and assign
the values within. The syntax x[0] refers to the first element in the array
and x[1] is the second:

int[] x; // Declare the array

void setup() {

 size(200, 200);

 x = new int[2]; // Create the array

 x[0] = 12; // Assign the first value

 x[1] = 2; // Assign the second value

}

Example 10-5: Compact Array Assignment

Here’s a slightly more compact example, in which the array is both de-
clared and created on the same line, then the values are assigned within
setup():

int[] x = new int[2]; // Declare and create the array

void setup() {

 size(200, 200);

 x[0] = 12; // Assign the first value

 x[1] = 2; // Assign the second value

}

Example 10-6: Assigning to an Array in One Go

You can also assign values to the array when it’s created, if it’s all part of a
single statement:

int[] x = { 12, 2 }; // Declare, create, and assign

void setup() {

 size(200, 200);

}

NOTE: Avoid creating arrays within draw(), because creating a new array
on every frame will slow down your frame rate.

From library of Wow! eBook

Arrays 147

Example 10-7: Revisiting the First Example

As a complete example of how to use arrays, we’ve recoded Example 10-1
here. Although we don’t yet see the full benefits revealed in Example 10-3,
we do see some important details of how arrays work:

float[] x = {-20, 20};

void setup() {

 size(240, 120);

 smooth();

 noStroke();

}

void draw() {

 background(0);

 x[0] += 0.5; // Increase the first element

 x[1] += 0.5; // Increase the second element

 arc(x[0], 30, 40, 40, 0.52, 5.76);

 arc(x[1], 90, 40, 40, 0.52, 5.76);

}

Repetition and Arrays
The for loop, introduced in “Repetition” in Chapter 4, makes it easier to
work with large arrays while keeping the code concise. The idea is to write
a loop to move through each element of the array one by one. To do this,
you need to know the length of the array. The length field associated with
each array stores the number of elements. We use the name of the array
with the dot operator (a period) to access this value. For instance:

int[] x = new int[2]; // Declare and create the array

println(x.length); // Prints 2 to the Console

int[] y = new int[1972]; // Declare and create the array

println(y.length); // Prints 1972 to the Console

From library of Wow! eBook

148 Getting Started with Processing

Example 10-8: Filling an Array in a for Loop

A for loop can be used to fill an array with values, or to read the values
back out. In this example, the array is first filled with random numbers
inside setup(), and then these numbers are used to set the stroke value
inside draw(). Each time the program is run, a new set of random num-
bers is put into the array:

float[] gray;

void setup() {

 size(240, 120);

 gray = new float[width];

 for (int i = 0; i < gray.length; i++) {

 gray[i] = random(0, 255);

 }

}

void draw() {

 for (int i = 0; i < gray.length; i++) {

 stroke(gray[i]);

 line(i, 0, i, height);

 }

}

Example 10-9: Track Mouse Movements

In this example, there are two arrays to store the position of the
mouse—one for the x-coordinate and one for the y-coordinate. These
arrays store the location of the mouse for the previous 60 frames. With
each new frame, the oldest x- and y-coordinate values are removed and
replaced with the current mouseX and mouseY values. The new values
are added to the first position of the array, but before this happens, each
value in the array is moved one position to the right (from back to front)
to make room for the new numbers. This example visualizes this action.

From library of Wow! eBook

Arrays 149

Also, at each frame, all 60 coordinates are used to draw a series of
ellipses to the screen:

int num = 60;

int x[] = new int[num];

int y[] = new int[num];

void setup() {

 size(240, 120);

 smooth();

 noStroke();

}

void draw() {

 background(0);

 // Copy array values from back to front

 for (int i = x.length-1; i > 0; i--) {

 x[i] = x[i-1];

 y[i] = y[i-1];

 }

 x[0] = mouseX; // Set the first element

 y[0] = mouseY; // Set the first element

 for (int i = 0; i < x.length; i++) {

 fill(i * 4);

 ellipse(x[i], y[i], 40, 40);

 }

}

NOTE: The technique for storing a shifting buffer of numbers in an array
shown in this example and Figure 10-2 is less efficient than an alterna-
tive technique that uses the % (modulo) operator. This is explained in the
Examples➝Basics➝Input➝StoringInput example included with Processing.

From library of Wow! eBook

150 Getting Started with Processing

Figure 10-2. Shifting the values in an array one place to the right.

Arrays of Objects
The two short examples in this section bring together every major pro-
gramming concept in this book: variables, iteration, conditionals, functions,
objects, and arrays. Making an array of objects is nearly the same as mak-
ing the arrays we introduced on the previous pages, but there’s one addi-
tional consideration: because each array element is an object, it must first
be created with the keyword new (like any other object) before it is assigned
to the array. With a custom-defined class such as JitterBug (see Chapter
9), this means using new to set up each element before it’s assigned to the
array. Or, for a built-in Processing class such as PImage, it means using the
loadImage() function to create the object before it’s assigned.

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

Arrays 151

Example 10-10: Managing Many Objects

This example creates an array of 33 JitterBug objects and then updates
and displays each one inside draw(). For this example to work, you need
to add the JitterBug class to the code:

JitterBug[] bugs = new JitterBug[33];

void setup() {

 size(240, 120);

 smooth();

 for (int i = 0; i < bugs.length; i++) {

 float x = random(width);

 float y = random(height);

 int r = i + 2;

 bugs[i] = new JitterBug(x, y, r);

 }

}

void draw() {

 for (int i = 0; i < bugs.length; i++) {

 bugs[i].move();

 bugs[i].display();

 }

}

// Copy JitterBug class here

The final array example loads a sequence of images and stores each as an
element within an array of PImage objects.

From library of Wow! eBook

152 Getting Started with Processing

Example 10-11: Sequences of Images

To run this example, get the images from the media.zip file as described in
Chapter 6. The images are named sequentially (frame-0001.png,
frame-0002.png, and so forth), which makes it possible to create the name
of each file within a for loop, as seen in the eighth line of the program:

int numFrames = 12; // The number of frames

PImage[] images = new PImage[numFrames]; // Make the array

int currentFrame = 1;

void setup() {

 size(240, 120);

 for (int i = 1; i < images.length; i++) {

 String imageName = "frame-" + nf(i, 4) + ".png";

 images[i] = loadImage(imageName); // Load each image

 }

 frameRate(24);

}

void draw() {

 image(images[currentFrame], 0, 0);

 currentFrame++; // Next frame

 if (currentFrame >= images.length) {

 currentFrame = 1; // Return to first frame

 }

}

The nf() function formats numbers so that nf(1, 4) returns the string “0001”
and nf(11, 4) returns “0011”. These values are concatenated with the begin-
ning of the file name (“frame-”) and the end (“.png”) to create the complete
file name as a String variable. The files are loaded into the array on the fol-
lowing line. The images are displayed to the screen one at a time in draw().
When the last image in the array is displayed, the program returns to the
beginning of the array and shows the images again in sequence.

From library of Wow! eBook

Arrays 153

Robot 8: Arrays

Arrays make it easier for a program to work with many elements. In this
example, an array of Robot objects is declared at the top. The array is
then allocated inside setup(), and each Robot object is created inside the
for loop. In draw(), another for loop is used to update and display each
element of the bots array.

The for loop and an array make a powerful combination. Notice the subtle
differences between the code for this example and Robot 7 (see “Robot
7: Objects” in Chapter 9) in contrast to the extreme changes in the visual
result. Once an array is created and a for loop is put in place, it’s as easy
to work with 3 elements as it is 3,000.

The decision to load the SVG file within setup() rather than in the Robot
class is the major change from Robot 7. This choice was made so the file
is loaded only once, rather than as many times as there are elements in
the array (in this case, 20 times). This change makes the code start faster
because loading a file takes time, and it uses less memory because the
file is stored once. Each element of the bot array references the same file.

From library of Wow! eBook

154 Getting Started with Processing

Robot[] bots; // Declare array of Robot objects

void setup() {

 size(720, 480);

 PShape robotShape = loadShape("robot1.svg");

 // Create the array of Robot objects

 bots = new Robot[20];

 // Create each object

 for (int i = 0; i < bots.length; i++) {

 // Create a random x-coordinate

 float x = random(-40, width-40);

 // Assign the y-coordinate based on the order

 float y = map(i, 0, bots.length, -100, height-200);

 bots[i] = new Robot(robotShape, x, y);

 }

 smooth();

}

void draw() {

 background(204);

 // Update and display each bot in the array

 for (int i = 0; i < bots.length; i++) {

 bots[i].update();

 bots[i].display();

 }

}

class Robot {

 float xpos;

 float ypos;

 float angle;

 PShape botShape;

 float yoffset = 0.0;

 // Set initial values in constructor

 Robot(PShape shape, float tempX, float tempY) {

 botShape = shape;

 xpos = tempX;

 ypos = tempY;

 angle = random(0, TWO_PI);

 }

From library of Wow! eBook

Arrays 155

 // Update the fields

 void update() {

 angle += 0.05;

 yoffset = sin(angle) * 20;

 }

 // Draw the robot to the screen

 void display() {

 shape(botShape, xpos, ypos + yoffset);

 }

}

From library of Wow! eBook

From library of Wow! eBook

 157

11/Extend

This book focuses on using Processing for
interactive graphics, because that’s the
core of what Processing does. However, the
software can do much more and is often
part of projects that move beyond a single
computer screen. For example, Processing
has been used to control machines, export
images for high-definition films, and export
models for 3D printing.

Over the last decade, Processing has been used to make music videos
for Radiohead and R.E.M., to make illustrations for publications such as
Nature and the New York Times, to output sculptures for gallery exhibi-
tions, to control a 120×12-foot video wall, to knit sweaters, and much
more. Processing has this flexibility because of its system of libraries.

A Processing library is a collection of code that extends the software
beyond its core functions and classes. Libraries have been important to
the growth of the project, because they let developers add new features
quickly. As smaller, self-contained projects, libraries are easier to manage
than if these features were integrated into the main software.

In addition to the libraries included with Processing (these are called the
core libraries), there are over 100 contributed libraries that are linked from
the Processing website. All libraries are listed online at http://processing.
org/reference/libraries/.

From library of Wow! eBook

158 Getting Started with Processing

To use a library, select Import Library from the Sketch menu. Choosing
a library will add a line of code that indicates that the library will be used
with the current sketch. For instance, when the OpenGL Library is added,
this line of code is added to the top of the sketch:

import processing.opengl.*;

Before a contributed library can be imported through the Sketch menu, it
must be downloaded from its website and placed within the libraries fold-
er on your computer. Your libraries folder is located in your sketchbook.
You can find the location of your sketchbook by opening the Preferences.
Place the downloaded library into a folder within your sketchbook called
libraries. If this folder doesn’t yet exist, create it.

As mentioned, there are more than 100 Processing libraries, so they
clearly can’t all be discussed here. We’ve selected a few that we think are
fun and useful to introduce in this chapter.

3D
There are two ways to draw in 3D with Processing; both require adding
a third parameter to the size() function to change the way graphics are
drawn. By default, Processing draws using a 2D renderer that is very pre-
cise, but slow. This is the JAVA2D renderer. A sometimes faster but lower-
quality version is P2D, the Processing 2D renderer. You can also change the
renderer to Processing 3D, called P3D, or OpenGL, to allow your programs
to draw in one additional dimension, the z-axis (see Figure 11-1).

Render with Processing 3D like this:

size(800, 600, P3D);

And OpenGL like this:

size(800, 600, OPENGL);

From library of Wow! eBook

Extend 159

Figure 11-1. Processing’s 3D coordinate system.

The P3D renderer is built-in, but the OpenGL renderer is a library and
requires the import statement within the code, as shown at the top of Ex-
ample 11-1. The OpenGL renderer makes use of faster graphics hardware
that’s available on most machines sold nowadays.

NOTE: The OpenGL renderer is not guaranteed to be faster in all situa-
tions; see the size() reference for more details.

Many of the functions introduced in this book have variations for work-
ing in 3D. For instance, the basic drawing functions point(), line(), and
vertex() simply add z-parameters to the x- and y-parameters that were
covered earlier. The transformations translate(), rotate(), and scale() also
operate in 3D.

From library of Wow! eBook

160 Getting Started with Processing

Example 11-1: A 3D Demo

More 3D functions are covered in the Processing Reference, but here’s an
example to get you started:

import processing.opengl.*;

void setup() {

 size(440, 220, OPENGL);

 noStroke();

 fill(255, 190);

}

void draw() {

 background(0);

 translate(width/2, height/2, 0);

 rotateX(mouseX / 200.0);

 rotateY(mouseY / 100.0);

 int dim = 18;

 for (int i = -height/2; i < height/2; i += dim*1.2) {

 for (int j = -height/2; j < height/2; j += dim*1.2) {

 beginShape();

 vertex(i, j, 0);

 vertex(i+dim, j, 0);

 vertex(i+dim, j+dim, -dim);

 vertex(i, j+dim, -dim);

 endShape();

 }

 }

}

When you start to work in 3D, new functions are available to explore. It’s
possible to change the camera, lighting, and material properties, and to
draw 3D shapes like spheres and cubes.

From library of Wow! eBook

Extend 161

Example 11-2: Lighting

This example builds on Example 11-1 by replacing the rectangles with
cubes and adding a few types of lights. Try commenting and uncomment-
ing different lights to see how each works by itself and in combination
with others:

import processing.opengl.*;

void setup() {

 size(420, 220, OPENGL);

 noStroke();

 fill(255);

}

void draw() {

 lights();

 //ambientLight(102, 102, 102);

 //directionalLight(255, 255, 255, // Color

 // -1, 0, 0); // Direction XYZ

 //pointLight(255, 255, 255, // Color

 // mouseX, 110, 50); // Position

 //spotLight(255, 255, 255, // Color

 // mouseX, 0, 200, // Position

 // 0, 0, -1, // Direction XYZ

 // PI, 2); // Concentration

 rotateY(PI/24);

 background(0);

From library of Wow! eBook

162 Getting Started with Processing

 translate(width/2, height/2, -20);

 int dim = 18;

 for (int i = -height/2; i < height/2; i += dim*1.4) {

 for (int j = -height/2; j < height/2; j += dim*1.4) {

 pushMatrix();

 translate(i, j, -j);

 box(dim, dim, dim);

 popMatrix();

 }

 }

}

There are four types of lights in Processing: spot, point, directional, and
ambient. Spot lights radiate in a cone shape; they have a direction, loca-
tion, and color. Point lights radiate from a single point like a lightbulb of
any color. Directional lights project in one direction to create strong lights
and darks. Ambient lights create an even light of any color over the entire
scene and are almost always used with other lights. The lights() func-
tion creates a default lighting setup with an ambient and directional light.
Lights need to be reset each time through draw(), so they should appear
at the top of draw() to ensure consistent results.

Working in 3D introduces the idea of a “camera” that is pointed at the
three-dimensional scene being constructed. Like a real-world camera, it
maps the 3D space into the flat 2D plane of the screen. Moving the cam-
era changes the way Processing maps the 3D coordinates of your drawing
onto the 2D screen.

Example 11-3: The Processing Camera

By default, Processing creates a camera that points at the center of the
screen, therefore shapes away from the center are seen in perspective.
The camera() function offers control over the camera location, the
location at which it’s pointed, and the orientation (up, down, tilted). In the
following example, the mouse is used to move the location where the
camera is pointing:

From library of Wow! eBook

Extend 163

import processing.opengl.*;

void setup() {

 size(420, 220, OPENGL);

 noStroke();

}

void draw() {

 lights();

 background(0);

 float camZ = (height/2.0) / tan(PI*60.0 / 360.0);

 camera(mouseX, mouseY, camZ, // Camera location

 width/2.0, height/2.0, 0, // Camera target

 0, 1, 0); // Camera orientation

 translate(width/2, height/2, -20);

 int dim = 18;

 for (int i = -height/2; i < height/2; i += dim*1.4) {

 for (int j = -height/2; j < height/2; j += dim*1.4) {

 pushMatrix();

 translate(i, j, -j);

 box(dim, dim, dim);

 popMatrix();

 }

 }

}

This section has presented the tip of the iceberg of 3D capability. In addi-
tion to the core functionality mentioned here, there are many Processing
libraries that help with generating 3D forms, loading and exporting 3D
shapes, and providing more advanced camera control.

From library of Wow! eBook

164 Getting Started with Processing

Image Export
The animated images created by a Processing program can be turned
into a file sequence with the saveFrame() function. When saveFrame() ap-
pears at the end of draw(), it saves a numbered sequence of TIFF-format
images of the program’s output named screen-0001.tif, screen-0002.tif,
and so on, to the sketch’s folder. These files can be imported into a video
or animation program and saved as a movie file. You can also specify your
own file name and image file format with a line of code like this:

saveFrame("output-####.png");

NOTE: When using saveFrame() inside draw(), a new file is saved each
frame—so watch out, as this can quickly fill your sketch folder with thou-
sands of files.

Use the # (hash mark) symbol to show where the numbers will appear in
the file name. They are replaced with the actual frame numbers when the
files are saved. You can also specify a subfolder to save the images into,
which is helpful when working with many image frames:

saveFrame("frames/output-####.png");

Example 11-4: Saving Images

This example shows how to save images by storing enough frames for a
two-second animation. It runs the program at 30 frames per second and
then exits after 60 frames:

From library of Wow! eBook

Extend 165

float x = 0;

void setup() {

 size(720, 480);

 smooth();

 noFill();

 strokeCap(SQUARE);

 frameRate(30);

}

void draw() {

 background(204);

 translate(x, 0);

 for (int y = 40; y < 280; y += 20) {

 line(-260, y, 0, y + 200);

 line(0, y + 200, 260, y);

 }

 if (frameCount < 60) {

 saveFrame("frames/SaveExample-####.tif");

 } else {

 exit();

 }

 x += 2.5;

}

Processing will write an image based on the file extension that you use
(.png, .jpg, or .tif are all built in, and some platforms may support others).
A .tif image is saved uncompressed, which is fast but takes up a lot of
disk space. Both .png and .jpg will create smaller files, but because of the
compression, will usually require more time to save, making the sketch
run slowly.

If your output is vector graphics, you can write the output to PDF files for
higher resolution. The PDF Export library makes it possible to write PDF
files directly from a sketch. These vector graphics files can be scaled to any
size without losing resolution, which makes them ideal for print output—
from posters and banners to entire books.

From library of Wow! eBook

166 Getting Started with Processing

Example 11-5: Draw to a PDF

This example builds on Example 11-4 to draw more chevrons of different
weights, but it removes the motion. It creates a PDF file called Ex-11-5.pdf
because of the third and fourth parameters to size():

import processing.pdf.*;

void setup() {

 size(600, 800, PDF, "Ex-11-5.pdf");

 noFill();

 strokeCap(SQUARE);

}

void draw() {

 background(255);

 for (int y = 100; y < height - 300; y+=20) {

 float r = random(0, 102);

 strokeWeight(r / 10);

 beginShape();

 vertex(100, y);

 vertex(width/2, y + 200);

 vertex(width-100, y);

 endShape();

 }

 exit();

}

The geometry is not drawn on the screen; it is written directly into the PDF
file, which is saved into the sketch’s folder. This code in this example runs
once and then exits at the end of draw(). The resulting output is shown in
Figure 11-2.

There are more PDF Export examples included with the Processing soft-
ware. Look in the PDF Export section of the Processing examples to see
more techniques.

From library of Wow! eBook

Extend 167

Figure 11-2. PDF export from Example 11-5.

From library of Wow! eBook

168 Getting Started with Processing

Hello Arduino
Arduino is an electronics prototyping platform with a series of micro-
controller boards and the software to program them. Processing and
Arduino share a long history together; they are sister projects with many
similar ideas and goals, though they address separate domains. Because
they share the same editor and programming environment and a similar
syntax, it’s easy to move between them and to transfer knowledge about
one into the other.

In this section, we focus on reading data into Processing from an Arduino
board and then visualize that data on screen. This makes it possible to
use new inputs into Processing programs and to allow Arduino program-
mers to see their sensor input as graphics. These new inputs can be
anything that attaches to an Arduino board. These devices range from a
distance sensor to a compass or a mesh network of temperature sensors.

This section assumes that you have an Arduino board and that you
already have a basic working knowledge of how to use it. If not, you can
learn more online at http://www.arduino.cc and in the excellent book
Getting Started with Arduino by Massimo Banzi (O’Reilly). Once you’ve
covered the basics, you can learn more about sending data between
Processing and Arduino in another outstanding book, Making Things Talk
by Tom Igoe (O’Reilly).

Data can be transferred between a Processing sketch and an Arduino
board with some help from the Processing Serial Library. Serial is a data
format that sends one byte at a time. In the world of Arduino, a byte is a
data type that can store values between 0 and 255; it works like an int, but
with a much smaller range. Larger numbers are sent by breaking them
into a list of bytes and then reassembling them later.

In the following examples, we focus on the Processing side of the relation-
ship and keep the Arduino code simple. We visualize the data coming in
from the Arduino board one byte at a time. With the techniques covered in
this book and the hundreds of Arduino examples online, we hope this will
be enough to get you started.

From library of Wow! eBook

http://oreilly.com/catalog/9780596155520/
http://oreilly.com/catalog/9780596510510/

Extend 169

Figure 11-3. An Arduino Duemilanove board.

Example 11-6: Read a Sensor

The following Arduino code is used with the next three Processing
examples:

// Note: This is code for an Arduino board, not Processing

int sensorPin = 0; // Select input pin

int val = 0;

void setup() {

 Serial.begin(9600); // Open serial port

}

void loop() {

 val = analogRead(sensorPin) / 4; // Read value from sensor

 Serial.print(val, BYTE); // Print variable to serial port

 delay(100); // Wait 100 milliseconds

}

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

170 Getting Started with Processing

There are two important details to note about this Arduino example. First,
it requires attaching a sensor into the analog input on pin 0 on the
Arduino board. You might use a light sensor (also called a photo resistor,
photocell, or light-dependent resistor) or another analog resistor such as
a thermistor (temperature-sensitive resistor), flex sensor, or pressure
sensor (force-sensitive resistor). The circuit diagram and drawing of the
breadboard with components are shown in Figure 11-4. Next, notice that
the value returned by the analogRead() function is divided by 4 before it’s
assigned to val. The values from analogRead() are between 0 and 1023,
so we divide by 4 to convert them to the range of 0 to 255 so that the data
can be sent in a single byte.

Figure 11-4. Attaching a light sensor to analog in pin 0.

Example 11-7: Read Data from the Serial Port

The first visualization example shows how to read the serial data in from
the Arduino board and how to convert that data into the values that fit to
the screen dimensions:

From library of Wow! eBook

Extend 171

import processing.serial.*;

Serial port; // Create object from Serial class

float val; // Data received from the serial port

void setup() {

 size(440, 220);

 // IMPORTANT NOTE:

 // The first serial port retrieved by Serial.list()

 // should be your Arduino. If not, uncomment the next

 // line by deleting the // before it. Run the sketch

 // again to see a list of serial ports. Then, change

 // the 0 in between [and] to the number of the port

 // that your Arduino is connected to.

 //println(Serial.list());

 String arduinoPort = Serial.list()[0];

 port = new Serial(this, arduinoPort, 9600);

}

void draw() {

 if (port.available() > 0) { // If data is available,

 val = port.read(); // read it and store it in val

 val = map(val, 0, 255, 0, height); // Convert the value

 }

 rect(40, val-10, 360, 20);

}

The Serial library is imported on the first line and the serial port is opened
in setup(). It may or may not be easy to get your Processing sketch to talk
with the Arduino board; it depends on your hardware setup. There is often
more than one device that the Processing sketch might try to commu-
nicate with. If the code doesn’t work the first time, read the comment in
setup() carefully and follow the instructions.

Within draw(), the value is brought into the program with the read()
method of the Serial object. The program reads the data from the serial
port only when a new byte is available. The available() method checks
to see if a new byte is ready and returns the number of bytes available.
This program is written so that a single new byte will be read each time
through draw(). The map() function converts the incoming value from its
initial range from 0 to 255 to a range from 0 to the height of the screen; in
this program, it’s from 0 to 220.

From library of Wow! eBook

172 Getting Started with Processing

Example 11-8: Visualizing the Data Stream

Now that the data is coming through, we’ll visualize it in a more interesting
format. The values coming in directly from a sensor are often erratic, and
it’s useful to smooth them out by averaging them. Here, we present the
raw signal from the light sensor illustrated in Figure 11-4 in the top half of
the example and the smoothed signal in the bottom half:

import processing.serial.*;

Serial port; // Create object from Serial class

float val; // Data received from the serial port

int x;

float easing = 0.05;

float easedVal;

void setup() {

 size(440, 440);

 frameRate(30);

 smooth();

 String arduinoPort = Serial.list()[0];

 port = new Serial(this, arduinoPort, 9600);

 background(0);

}

void draw() {

 if (port.available() > 0) { // If data is available,

 val = port.read(); // read it and store it in val

 val = map(val, 0, 255, 0, height); // Convert the values

 }

From library of Wow! eBook

Extend 173

 float targetVal = val;

 easedVal += (targetVal - easedVal) * easing;

 stroke(0);

 line(x, 0, x, height); // Black line

 stroke(255);

 line(x+1, 0, x+1, height); // White line

 line(x, 220, x, val); // Raw value

 line(x, 440, x, easedVal + 220); // Averaged value

 x++;

 if (x > width) {

 x = 0;

 }

}

Similar to Examples 5-8 and 5-9, this sketch uses the easing technique.
Each new byte from the Arduino board is set as the target value, the dif-
ference between the current value and the target value is calculated, and
the current value is moved closer to the target. Adjust the easing variable
to affect the amount of smoothing applied to the incoming values.

Example 11-9: Another Way to Look at the Data

This example is inspired by radar display screens. The values are read in
the same way from the Arduino board, but they are visualized in a circular
pattern using the sin() and cos() functions introduced earlier in Examples
7-12 to 7-15:

From library of Wow! eBook

174 Getting Started with Processing

import processing.serial.*;

Serial port; // Create object from Serial class

float val; // Data received from the serial port

float angle;

float radius;

void setup() {

 size(440, 440);

 frameRate(30);

 strokeWeight(2);

 smooth();

 String arduinoPort = Serial.list()[0];

 port = new Serial(this, arduinoPort, 9600);

 background(0);

}

void draw() {

 if (port.available() > 0) { // If data is available,

 val = port.read(); // read it and store it in val

 // Convert the values to set the radius

 radius = map(val, 0, 255, 0, height * 0.45);

 }

 int middleX = width/2;

 int middleY = height/2;

 float x = middleX + cos(angle) * height/2;

 float y = middleY + sin(angle) * height/2;

 stroke(0);

 line(middleX, middleY, x, y);

 x = middleX + cos(angle) * radius;

 y = middleY + sin(angle) * radius;

 stroke(255);

 line(middleX, middleY, x, y);

 angle += 0.01;

}

From library of Wow! eBook

Extend 175

The angle variable is updated continuously to move the line drawing the
current value around the circle, and the val variable scales the length of the
moving line to set its distance from the center of the screen. After one time
around the circle, the values begin to write on top of the previous data.

We’re excited about the potential of using Processing and Arduino to-
gether to bridge the world of software and electronics. Unlike the ex-
amples printed here, the communication can be bidirectional. Elements
on screen can also affect what’s happening on the Arduino board. This
means you can use a Processing program as an interface between your
computer and motors, speakers, lights, cameras, sensors, and almost
anything else that can be controlled with an electrical signal. Again, more
information about Arduino can be found at http://www.arduino.cc.

Community
We’ve worked hard to make it easy to export Processing programs so
that you can share them with others. In the second chapter, we discussed
sharing your programs by exporting them. We believe that sharing fosters
learning and community. As you modify the programs from this book
and start to write your own programs from scratch, we encourage you to
review that section of the book and to share your work with others. At the
present, the groups at OpenProcessing, Vimeo, Flickr, and the Processing
Wiki are exciting places to visit and contribute to. On Twitter, searches for
#Processing and Processing.org yield interesting results. These com-
munities are always moving and flowing. Check the main Processing site
(http://www.processing.org) for fresh links as well as these:

»» http://www.openprocessing.org

»» http://www.vimeo.com/tag:processing.org

»» http://www.flickr.com/groups/processing/

»» http://www.delicious.com/tag/processing.org/

From library of Wow! eBook

From library of Wow! eBook

 177

A/Coding Tips

Coding is a type of writing. Like all types of writing, code has specific
rules. For comparison, we’ll quickly mention some of the rules for Eng-
lish that you probably haven’t thought about in a while because they are
second nature. Some of the more invisible rules are writing from left to
right and putting a space between each word. More overt rules are spell-
ing conventions, capitalizing the names of people and places, and using
punctuation at the end of sentences to provide emphasis! If we break
one or more of these rules when writing an email to a friend, the message
still gets through. For example, “hello ben. how r u today” communicates
nearly as well as, “Hello Ben. How are you today?” However, flexibility with
the rules of writing don’t transfer to programming. Because you’re writing
to communicate with a computer, rather than another person, you need
to be more precise and careful. One misplaced character is often the dif-
ference between a program that runs and one that doesn’t.

Processing tries to tell you where you’ve made mistakes and to guess
what the mistake is. When you press the Run button, if there are grammar
(syntax) problems with your code (we call them bugs), then the Message
Area turns red and Processing tries to highlight the line of code that it sus-
pects as the problem. The line of code with the bug is often one line above
or below the highlighted line, though in some cases, it’s nowhere close.
The text in the message area tries to be helpful and suggests the potential
problem, but sometimes the message is too cryptic to understand. For
a beginner, these error messages can be frustrating. Understand that
Processing is a simple piece of software that’s trying to be helpful, but it
has a limited knowledge of what you’re trying to do.

Long error messages are printed to the Console in more detail, and some-
times scrolling through that text can offer a hint. Additionally, Processing
can find only one bug at a time. If your program has many bugs, you’ll
need to keep running the program and fix them one at a time.

Please read and reread the following suggestions carefully to help you
write clean code.

From library of Wow! eBook

178 Getting Started with Processing

Functions and Parameters
Programs are composed of many small parts, which are grouped together
to make larger structures. We have a similar system in English: words are
grouped into phrases, which are combined to make sentences, which are
combined to create paragraphs. The idea is the same in code, but the
small parts have different names and behave differently. Functions and
parameters are two important parts. Functions are the basic building
blocks of a Processing program. Parameters are values that define how
the function behaves.

Consider a function like background(). Like the name suggests, it’s used
to set the background color of the Display Window. The function has three
parameters that define the color. These numbers define the red, green,
and blue components of the color to define the composite color. For ex-
ample, the following code draws a blue background:

background(51, 102, 153);

Look carefully at this single line of code. The key details are the paren-
theses after the function name that enclose the numbers, the commas
between each number, and the semicolon at the end of the line. The
semicolon is used like a period. It signifies that one statement is over so
the computer can look for the start of the next. All of these parts need to
be there for the code to run. Compare the previous example line to these
three broken versions of the same line:

background 51, 102, 153; // Error! Missing the parentheses

background(51 102, 153); // Error! Missing a comma

background(51, 102, 153) // Error! Missing the semicolon

The computer is very unforgiving about even the smallest omission or
deviation from what it’s expecting. If you remember these parts, you’ll
have fewer bugs. But if you forget to type them, which we all do, it’s not a
problem. Processing will alert you about the problem, and when it’s fixed,
the program will run well.

From library of Wow! eBook

Appendix A 179

Color Coding
The Processing environment color-codes different parts of each pro-
gram. Words that are a part of Processing are drawn as blue and orange
to distinguish them from the parts of the program that you invent. The
words that are unique to your program, such as your variable and func-
tion names, are drawn in black. Basic symbols such as (), [], and > are
also black.

Comments
Comments are notes that you write to yourself (or other people) inside
the code. You should use them to clarify what the code is doing in plain
language and provide additional information such as the title and author
of the program. A comment starts with two forward slashes (//) and con-
tinues until the end of the line:

// This is a one-line comment

You can make a multiple-line comment by starting with /* and ending
with */. For instance:

/* This comment

 continues for more

 than one line

*/

When a comment is correctly typed, the color of the text will turn gray.
The entire commented area turns gray so you can clearly see where it
begins and ends.

From library of Wow! eBook

180 Getting Started with Processing

Uppercase and Lowercase
Processing distinguishes uppercase letters from lowercase letters and
therefore reads “Hello” as a distinct word from “hello”. If you’re trying to
draw a rectangle with the rect() function and you write Rect(), the code
won’t run. You can see if Processing recognizes your intended code by
checking the color of the text.

Style
Processing is flexible about how much space is used to format your code.
Processing doesn’t care if you write:

rect(50, 20, 30, 40);

or:
rect (50,20,30,40);

or:
rect (50,20,

 30, 40) ;

However, it’s in your best interest to make the code easy to read. This be-
comes especially important as the code grows in length. Clean formatting
makes the structure of the code immediately legible, and sloppy format-
ting often obscures problems. Get into the habit of writing clean code.
There are many different ways to format the code well, and the way you
choose to space things is a personal preference.

From library of Wow! eBook

Appendix A 181

Console
The Console is the bottom area of the Processing Environment. You can
write messages to the Console with the println() function. For example,
the following code prints a message followed by the current time:

println("Hello Processing.");

println("The time is " + hour() + ":" + minute());

The Console is essential to seeing what is happening inside of your pro-
grams while they run. It’s used to print the value of variables so you can
track them, to confirm if events are happening, and to determine where a
program is having a problem.

One Step at a Time
We recommend writing a few lines of code at a time and running the
code frequently to make sure that bugs don’t accumulate without your
knowledge. Every ambitious program is written one line at a time. Break
your project into simpler subprojects and complete them one at a time so
that you can have many small successes, rather than a swarm of bugs.
If you have a bug, try to isolate the area of the code where you think the
problem lies. Try to think of fixing bugs as solving a mystery or puzzle. If
you get stuck or frustrated, take a break to clear your head or ask a friend
for help. Sometimes, the answer is right under your nose but requires a
second opinion to make it clear.

From library of Wow! eBook

From library of Wow! eBook

Boykma
Text Box
From library of Wow! eBook

 183

B/Data Types

There are different categories of data. For instance, think about the data
on an ID card. The card has numbers to store weight, height, date of birth,
street address, and postal code. It has words to store a person’s name
and city. There’s also image data (a photo) and often an organ donor
choice, which is a yes/no decision. In Processing, we have different data
types to store each kind of data. Each of the following types is explained
in more detail elsewhere in the book, but this is a summary.

Name Description Range of values

int Integers (whole numbers) –2,147,483,648 to 2,147,483,647

float Floating-point values –3.40282347E+38 to 3.40282347E+38

boolean Logical value true or false

char Single character A–z, 0–9, and symbols

String Sequence of characters Any letter, word, sentence, and so on

PImage PNG, JPG, or GIF image N/A

PFont VLW font; use the Create Font
tool to make

N/A

PShape SVG file N/A

As a guideline, a float number has about four digits of accuracy after the
decimal point. If you’re counting or taking small steps, you should use an
int value to take the steps, and then perhaps scale it by a float if neces-
sary when putting it to use.

There are more data types than those mentioned here, but these are the
most useful for the work typically made with Processing. In fact, as men-
tioned in Chapter 9, there are infinite types of data, because every new
class is a different data type.

From library of Wow! eBook

From library of Wow! eBook

 185

C/Order of Operations

When mathematical calculations are performed in a program, each
operation takes place according to a prespecified order. This order of op-
erations ensures that the code is run the same way every time. This is no
different from arithmetic or algebra, but programming has other opera-
tors that are less familiar.

In the following table, the operators on the top are run before those below.
Therefore, an operation inside parentheses will run first and an assign-
ment will run last.

Name Symbol Examples
Parentheses () a * (b + c)

Postfix, Unary ++ -- ! a++ --b !c

Multiplicative * / % a * b

Additive + - a + b

Relational > < <= >= if (a > b)

Equality == != if (a == b)

Logical AND && if (mousePressed && (a > b))

Logical OR || if (mousePressed || (a > b))

Assignment = += -= *= /= %= a = 44

From library of Wow! eBook

From library of Wow! eBook

 187

D/Variable Scope

The rule of variable scope is defined simply: a variable created inside a
block (code enclosed within braces: { and }) exists only inside that block.
This means that a variable created inside setup() can be used only within
the setup() block, and likewise, a variable declared inside draw() can be
used only inside the draw() block. The exception to this rule is a variable
declared outside of setup() and draw(). These variables can be used
in both setup() and draw() (or inside any other function that you cre-
ate). Think of the area outside of setup() and draw() as an implied code
block. We call these variables global variables, because they can be used
anywhere within the program. We call a variable that is used only within a
single block a local variable. Following are a couple of code examples that
further explain the concept. First:

int i = 12; // Declare global variable i and assign 12

void setup() {

 size(480, 320);

 int i = 24; // Declare local variable i and assign 24

 println(i); // Prints 24 to the console

}

void draw() {

 println(i); // Prints 12 to the console

}

And second:

void setup() {

 size(480, 320);

 int i = 24; // Declare local variable i and assign 24

}

void draw() {

 println(i); // ERROR! The variable i is local to setup()

}

From library of Wow! eBook

From library of Wow! eBook

Index 189

Index

Symbols
3D, drawing in, 158–163
// (double slashes) for code comments,

33
== (equal to) operator, 72
> (greater than) operator, 44
>= (greater than or equal to) operator,

44
(hash mark) symbol, 164
< (less than) operator, 44
<= (less than or equal to) operator, 44
&& (logical AND operator), 68
|| (logical OR operator), 72
% (modulo operator), 149
!= (not equal to) operator, 44

A
ACM SIGGRAPH archives, 4
alpha values, 29
ambient lights, 162
analogRead() function, 170
animation

bouncing shapes off sides of screen,
94–95

calculating tween positions, 95–96
circular motion with sine and cosine,

103
drawing/moving shapes randomly,

97–99
frame rates, 91–92
moving shapes, 92–93
rotating coordinate system, 108–109
scaling shapes, 110–113
sine wave values/movement, 102–103
spirals, creating, 104

timed events, triggering, 100
tracking time, 99
translating locations, 106–108
wrapping shapes around screen, 93–94

antialiasing (smoothing), 23
applet folder, 12–13
arc() function, 20
Arduino boards

data stream, visualizing, 172–173
overview, 168–169
reading data from serial port, 170–171
reading sensors, 169–170
visualizing data in circular patterns,

173–174
arithmetic operations

operators, 41–42
order of, 185

arrays
creating (examples), 144–147
defined, 141
filling arrays with values in for loops,

148
of objects, 150–152
repetition and, 147
sequence of images stored in, 152–153
tracking mouse movements with,

148–149
arrow keys, detecting, 73
arrows, drawing, 30

B
background() function, 26, 54
beginShape() function, 30
blocks, for loop, 43
boolean data type, 60–62, 183
buttons (mouse), tracking, 63–64

From library of Wow! eBook

190 Index

C
calculations, order of, 185
camera() function, 162–163
char variables, 70
circles

cursor position relative to, 66–67
drawing, 10, 19

circular motion
example, 113–114
with sine and cosine, 103

classes of objects, 130–134
clicks, mouse, 60–63
CLOSE parameter, 31–32
code

coding tips, 177–181
examples, x
modifying with variables, 49–50
repeating with for loops, 42–45
splitting into tabs, 137

coded keys, 73
color

coding, 179
Color Selector, 28–29
drawing with, 26–30

columns and rows, creating with for
loops, 47

comments
adding to code with //, 33–34
multiple-line, 179
tips for writing, 179

community, Processing, 175
comparison operator (==), 72
Console

defined, 8
functions of, 181

constrain() function, 99
constructors (OOP), 132
continuous lines, drawing, 55
cursors, finding location of, 65–68
customizing shapes, 30–33

D
data folder, 77–78
data types

boolean, 60–62, 183
char, 183
float, 183
int, 183
parameters and, 122
PFont, 183
PImage, 183
PShape, 183
String, 183
summary of, 183–184
of variables, 39

declaring object variables, 134
degrees, measuring in, 20–22
directional lights, 162
Display Window, 15
dist() function, 55–56, 66
dot (.) operator, 136
double slashes (//) for code comments,

33
downloading Processing, 7–8
drawing

in 3D, 158–163
basic shapes, 16–18
circles, 10
with color, 26–30
continuous lines, 55
controlling order of, 22–23
draw() function, 51–52
ellipses, 9, 19–20
with fonts, 84–85
images to screen, 78–80
lines, 18
to PDF files, 166–167
points, 16
with radians, 22
rectangles, 19
shapes randomly, 97–99
smooth lines, 23–24
squares and circles, 19
windows, 16

From library of Wow! eBook

Index 191

E
easing

mouse movements, 56–57
smoothing lines with, 57

elements, defined (arrays), 144
ellipses

drawing, 9, 19–20
ellipseMode() function, 25

else blocks, 62–63
embedded for loops, 46
endShape() function, 30
examples and reference (Processing),

13–14
exporting

images, 164–167
sketches, 12–13

expressions, arithmetic, 41–42

F
fields, object, 129–134
fill() function, 26
float data type, 92
float numbers, 183
folders, library, 158
fonts

creating, 83–84
drawing with, 84–85

for loops
examples of, 42–47
filling arrays with values in, 148

frame rates, 91–92
functions

basics of, 116–117
calculating and returning values with,

124–125
coding tips, 178
defined, 15
steps for creating, 118–124

G
Getting Started with Arduino (O’Reilly),

168
GIF image format, 12, 81–82
GIMP software, 81
global variables, 52
gray values, 27–28

H
HTML files in applet folder, 12

I
if blocks, 62–63
images

drawing to screen, 78–80
exporting, 164–167
image() function, 79
resizing, 80–81
saving, 164–165

initialization statement, 44
instances, defined (objects), 130
instance variables, 129

J
JAR file in applet folder, 12
JAVA2D renderer, 158
JPEG image format, 81–82

K
keyboard characters, setting size of, 71
keyCode variable, 73
keyPressed variable, 68–70
keys

detecting specific, 72–73
tapping, 70–71

L
libraries, Processing, 157–158
lighting in 3D (example), 161–162
lights() function, 162
lines

drawing, 18
drawing continuous, 55
drawing smooth, 23–24
and pins, creating, 48
setting thickness of, 55–56
smoothing with easing, 57

Linux, installing Processing on, 7–8
loadFont() function, 84
loadImage() function, 78

From library of Wow! eBook

192 Index

local variables, 187
logical operators

AND (&&), 68
OR (||), 72

M
Mac OS X, installing Processing on, 7
Maeda, John, vii
map() function, 59–60
media files,downloading, 77
message area, defined, 8
methods (OOP), 129–134
modulo (%) operator, 149
mouse

buttons, tracking multiple, 63–64
clicks of, 60–63
easing movements of, 56–57
resizing images with movements of,

80–81
tracking movements with arrays,

148–149
mousePressed variable, 60
mouse speed, calculating with variables,

55–56
mouse tracking, 53–54

N
naming variables, 39
new keyword, 134, 145
nf() function, 152
non-Roman characters, 84
noSmooth() function, 23

O
objects

arrays of, 150–152
basic concepts, 129–130
classes and, 130–134
creating, 134–135
creating multiple, 136–137

OOP (object-oriented programming), 129
OpenGL, 5
OpenGL renderer, 159

operators
arithmetic, 41
relational, 44

order, drawing, 22–23
order of operations (calculations), 185
owl function, creating (example), 118–124

P
P5 Processing Robot. See robot

programs (examples)
parameters

basics of, 122–123
coding tips, 178

PDE file in applet folder, 12
PDF Export library, 165
PDF files, drawing to, 166–167
PEMDAS acronym, 42
PFont data type, 84
PImage data type, 78
pins and lines, creating, 48
pixel basics, 15
PNG image format, 81–82
point lights, 162
points, drawing, 16
popMatrix()/pushMatrix() functions, 107
PostScript, 5
Present command, 11
println() function, 181
Processing

community for sharing programs, 175
defined, 1
downloading/launching, 7–8
examples and Reference, 13
flexibility of, 3
history of, vii–viii, 4
libraries, 157–158
Processing Development Environment

(PDE), 8
related languages and programming

environments, 5
special variables in, 40
versions of, installing, 7–8
website for sharing/networking, 6

properties, shape, 23–25
pushMatrix()/popMatrix() functions, 107

From library of Wow! eBook

Index 193

R
radians

defined, 20–21
drawing with, 22

random() function, 97, 113–114, 117
randomSeed() function, 99
ranges, mapping values to, 58–59
raster images in JPEG/PNG/GIF formats,

81
reading sensors (Arduino), 169–170
rectangles

cursor position relative to, 67–68
drawing, 19

rectMode() function, 25
Reference and examples (Processing), 14
relational operators, 44
resizing images, 80–81
RGB color, 28
robot programs (examples)

arrays of Robot objects, 153–155
drawing P5 robot, 34–35
drawRobot() function, 126–128
loading images from SVG/PNG files,

89–90
modifying code with variables, 49–50
random and circular movements,

113–114
Robot class and objects, 138–139
shapes responding to mouse, 74–76

rotate() function, 108
rotating coordinate system, 108–109
rows and columns, creating with for

loops, 47
Run button, 10–11

S
Safari Books Online, xi
saving

images, 164–165
Save command, 11–12
saveFrame() function, 164

scale() function, 110
scaling shapes, 88, 110–113

scope, variable, 187
sensors, reading (Arduino), 169–170
Serial Library (Processing), 168, 171
setup() function, 52–53
shapes

custom, 30–33
drawing basic, 16–18
drawing randomly, 97–99
drawing with, 87
moving, 92–93
properties, 23–25
responding to mouse, 74–75
scaling, 88
shape() function, 87

shortcuts for calculations, 42
sin() and cos() functions, 101–104
sine wave values/movement, 102–103
size() function, 15–16, 40
sketching

creating/saving sketches, 11–12
exporting sketches, 12–13
overview, 2
sketchbook, defined, 11
Sketch menu, 11

smoothing lines with easing, 57
smooth lines, drawing, 23–24
spirals, creating, 104
spot lights, 162
strings, storing text in, 86
strokeCap() function, 25
stroke() function, 26
strokeJoin() function, 25
stroke weights

consistency of, 111–112
setting, 24

style tips for coding, 180
SVG files, loading and drawing, 87
SVG format, vector shapes in, 81
syntax, precise use of, 9

T
tab feature (Processing Environment),

137
tapping keys, 70–71
test statement, 44

From library of Wow! eBook

194 Index

text
drawing in boxes, 85
editor, defined, 8
storing in strings, 86
textAlign() function, 71
textFont() command, 84
text() function, 71, 84
textSize() function, 71, 84

TIFF format, 164
timed events, triggering, 100
toolbar, defined, 8
Tools Color Selector, 28–29
tracking

mouse, 53–54
multiple mouse buttons, 63–64

translate() function, 106–107
translating locations, 106–109
transparency

with GIF/PNG images, 81–83
setting, 29

tweening (animation), 95–96

U
uppercase/lowercase letters in code, 180

V
values, returning with functions, 124–125
variables

arrays and, 141–143
calculating mouse speed with, 55–56
changing values with, 38
creating, 39
declaring object variables, 134
frameRate variable. See frame rates
global, 52
modifying code with, 49
reusing identical values, 37
variable scope, 187

vector graphics, 165
vector shapes

in SVG format, 81
loading into Processing, 86
scaling, 88

vertex() function, 30–32
VLW format, 83

W
websites, for downloading

media files, 77
Processing libraries, 157

websites, for further information
Arduino boards, 168
resources for sharing programs, 175

width/height variables, 40
Windows (Microsoft), installing

Processing on, 7
wrapping shapes on screen, 93–94

From library of Wow! eBook

About the Authors

Casey Reas is a professor in the Department of Design Media Arts at
UCLA and a graduate of the MIT Media Laboratory. Reas’s software has
been featured in numerous solo and group exhibitions at museums and
galleries in the United States, Europe, and Asia. With Ben Fry, he cofounded
Processing in 2001. He is the coauthor of Processing: A Programming Hand-
book for Visual Designers and Artists (MIT Press, 2007) and Form+Code
in Design, Art, and Architecture (Princeton Architectural Press, 2010). His
work is archived at www.reas.com.

Ben Fry has a doctorate from the MIT Media Laboratory and was the
2006–2007 Nierenberg Chair of Design for the Carnegie Mellon School
of Design. He worked with Casey Reas to develop Processing, which won
a Golden Nica from the Prix Ars Electronica in 2005. Fry’s work has re-
ceived a New Media Fellowship from the Rockefeller Foundation, and been
shown at the Museum of Modern Art, Ars Electronica, the 2002 Whitney
Biennial, and the 2003 Cooper Hewitt Design Triennial.

Colophon

The cover, heading, and body font is BentonSans, and the code font is
Bitstreams Vera Sans Mono.

From library of Wow! eBook

	Preface
	1/Hello
	Sketching and Prototyping
	Flexibility
	Giants
	Family Tree
	Join In

	2/Starting to Code
	Your First Program
	Show
	Save
	Share
	Examples and Reference

	3/Draw
	Basic Shapes
	Drawing Order
	Shape Properties
	Color
	Custom Shapes
	Comments
	Robot 1: Draw

	4/Variables
	Making Variables
	A Little Math

	Processing Variables
	Repetition
	Robot 2: Variables

	5/Response
	Follow
	Map
	Click
	Location
	Type
	Robot 3: Response

	6/Media
	Images
	Fonts
	Shapes
	Robot 4: Media

	7/Motion
	Speed and Direction
	Tweening
	Random
	Timers
	Circular
	Translate, Rotate, Scale
	Robot 5: Motion

	8/Functions
	Function Basics
	Make a Function
	Return Values
	Robot 6: Functions

	9/Objects
	Classes and Objects
	Robot 7: Objects

	10/Arrays
	Make an Array
	Repetition and Arrays
	Arrays of Objects
	Robot 8: Arrays

	11/Extend
	3D
	Image Export
	Hello Arduino
	Community

	A/Coding Tips
	Functions and Parameters
	Color Coding
	Comments
	Uppercase and Lowercase
	Style
	Console
	One Step at a Time

	B/Data Types
	C/Order of Operations
	D/Variable Scope
	Index

